检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄会宝 江德军 刘恒 罗忠平 HUANG Hui-bao;JIANG De-jun;LIU Heng;LUO Zhong-ping(College of Water Resources and Hydropower,Sichuan University,Chengdu 610065,China;Dadu River Hydropower Development Co.,Ltd.,Chengdu 610095,China)
机构地区:[1]四川大学水利水电学院,成都610065 [2]国能大渡河流域水电开发有限公司,成都610095
出 处:《科学技术与工程》2023年第30期13112-13120,共9页Science Technology and Engineering
基 金:四川省科技计划(2022YFG0120);国能大渡河流域水电开发有限公司科研项目(KB-KY-2021-001)。
摘 要:形变监测与预测是对水电站异常情况进行预警和及时采取补救措施的关键。提出了一种长短期记忆(LSTM,long short-term memory)神经网络方法来预测大渡河流域瀑布沟水电站干涉合成孔径雷达(InSAR,interferometric synthetic aperture radar)的时间序列形变。该方法首先利用多时相干涉合成孔径雷达(MT-InSAR,multi-temporal interferometric synthetic aperture radar)技术对2018—2020年瀑布沟水电站的哨兵一号(Sentinel-1)图像进行时间序列形变监测,然后基于时间序列InSAR形变数据采用LSTM神经网络建立了形变预测模型,最终获取瀑布沟水电站的形变速率结果和时序形变的预测结果。结果表明,瀑布沟水电站最大沉降速率达到-34 mm/a,LSTM预测模型训练和测试过程中点尺度的均方根误差(root mean squared error,RMSE)和绝对误差平均值(mean absolute error,MAE)最小值分别为2.343 mm和2.010 mm,2.094 mm和1.654 mm。LSTM形变预测模型的预测结果显示2020年5—9月的累计沉降值将达到71.29 mm。结果表明LSTM神经网络是一种有效InSAR时序形变预测方法。同时该模型的预测结果也可用于瀑布沟水电站的形变预警和辅助决策。Deformation monitoring and prediction are crucial for early warning and timely remedial measures for abnormal situations in hydroelectric power stations.The long short-term memory(LSTM) neural network method was proposed to predict the time series deformation of the Pubugou Waterfall Power Station in the Dadu River Basin using interferometric synthetic aperture radar(InSAR) data.First,the multi-temporal interferometric synthetic aperture radar(MT-InSAR) technique was used to monitor the time series deformation of the Pubugou Waterfall Power Station based on Sentinel-1 images from 2018 to 2020.Then,an LSTM neural network was employed to establish a deformation prediction model based on the time series InSAR deformation data.The results show that the maximum subsidence rate of the Pubugou Waterfall Power Station reaches-34 mm/a.The point-scale RMSE and MAE of the LSTM prediction model during training and testing are the minimum values of 2.343 mm and 2.010 mm,and 2.094 mm and 1.654 mm,respectively.The predicted results of the LSTM deformation prediction model indicate that the cumulative subsidence from May to September 2020 will reach 71.29 mm.This study demonstrates that the LSTM neural network is an effective method for predicting InSAR time series deformation.Moreover,the predicted results of this model can also be used for deformation warning and decision-making support for the Pubugou Waterfall Power Station.
关 键 词:形变监测 长短期记忆神经网络 干涉合成孔径雷达 多时相干涉合成孔径雷达 形变预测
分 类 号:TV697.23[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49