基于确定性测量矩阵的ZP-SCBT压缩感知稀疏信道估计方法  

ZP-SCBT compressed sensing sparse channel estimation method based on deterministic measurement matrix

在线阅读下载全文

作  者:刘怡青 朱凯 崔思国 Liu Yiqing;Zhu Kai;Cui Siguo(Shaanxi Provincial Cancer Hospital,Xi’an 730020,China;Unit 94701 of the People’s Liberation Army of China,Anqing 246003,China;Unit 93383 of the People’s Liberation Army of China,Mudanjiang 157023,China)

机构地区:[1]陕西省肿瘤医院,陕西西安730020 [2]中国人民解放军94701部队,安徽安庆246003 [3]中国人民解放军93383部队,黑龙江牡丹江157023

出  处:《无线互联科技》2023年第17期7-11,共5页Wireless Internet Technology

摘  要:为提高补零单载波分块传输(ZP-SCBT)系统高速传输性能,文章提出一种基于确定性测量矩阵的压缩感知稀疏信道估计方法。新方法首先将ZP-SCBT系统的稀疏信道估计问题建模为利用导频块构造托普利兹测量矩阵的压缩感知问题;其次以降低托普利兹测量矩阵的互相关性作为测量矩阵优化目标,通过寻找最佳二进制导频序列,构造确定性托普利兹测量矩阵,解决传统随机托普利兹测量矩阵产生和存储不便的突出问题;最后利用Dantzig Selector重构算法恢复稀疏信道冲激响应,提高稀疏信道估计精度。基于准静态COST207典型乡村信道模型的计算机仿真实验表明,文章所提的信道估计方法较传统方法具有较大性能增益,更适合于稀疏信道。A compressed sensing sparse channel estimation method is proposed for zero padded SCBT(ZP-SCBT) system by using deterministic measurement matrix.The new method first formulates sparse channel estimation problem in ZP-SCBT system as a compressed sensing one by using pilot sequence,then mutual incoherence property(MIP) of a Toeplitz matrix is taken as the optimization target,and a binary sequences with nearly optimal MIP property is used to construct a deterministic Toeplitz structured measurement matrix,which is much easier to generate and store,and has better reconstruction performance.At last,Dantzig selector is used for sparse channel recovery to improve channel estimation accuracy.The new method can greatly improve the estimation accuracy compared to traditional least square(LS) and PN correlated estimation schemes when employed in sparse channels.Computer experiments are carried out in quasi-static COST 207 typical rural area channel model.Their results show that the proposed channel estimation method can outperforms traditional LS estimation method,and is more suitable for sparse channels.

关 键 词:ZP-SCBT 稀疏信道估计 压缩感知 确定性测量矩阵 托普利兹测量矩阵 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象