时序数据驱动的化工过程风险动态预警研究  被引量:5

Chemical process risk warning based on CNN LSTM and fuzzy mathematics

在线阅读下载全文

作  者:陈樑 朱君烨[1] 金龙 雷坚 郭冰 曾家其 CHEN Liang;ZHU Junye;JIN Long;LEI Jian;GUO Bing;ZENG Jiaqi(School of Public Safety and Emergency Management,Kunming University of Science and Technology,Kunming 650500,China;Faculty of Environmental Science and Engineering,Kunming University of Science and Technology,Kunming 650500,China;Chengdu Institute of Urban Safety and Emergency Management,Chengdu 610500,China;Yunnan Shuifu Yuntianhua Co.,Ltd.,Zhaotong 657000,Yunnan,China;Yunnan Tian'an Chemical Co.,Ltd.,Kunming 650500,China)

机构地区:[1]昆明理工大学公共安全与应急管理学院,昆明650500 [2]昆明理工大学环境科学与工程学院,昆明650500 [3]成都市城市安全与应急管理研究院,成都610500 [4]云南水富云天化有限公司,云南昭通657000 [5]云南天安化工有限公司,昆明650500

出  处:《安全与环境学报》2023年第10期3491-3501,共11页Journal of Safety and Environment

基  金:云南省重点研发计划项目(202003AC100002)。

摘  要:对化工过程进行在线监测与动态风险预警是降低事故发生的有效途径。提出了一种基于深度学习时序预测与模糊数学定量风险评估相结合的预警方法。针对化工过程数据的动态性、时序性、非线性强,且预测周期短等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与长短期记忆网络(Long Short-Term Memory,LSTM)模型结合形成深度学习时序预测模型,实现过程参数108 min的超前预测。将该方法应用于合成氨过程,对温度、压力、流量、氢氮比等6个风险参数进行预测。结果表明,该预测方法具有较高的预测精度,其线性回归相关系数及均方根误差表明所提出的方法具有非常高的精度。同时利用三角模糊数对时序预测结果进行风险评估,得到时序风险变化曲线,实现了化工过程风险预警。研究对使用人工智能和大数据实现过程控制和风险预警进行了有益探索,为实现化工过程的超前预警提供参考。Online monitoring and dynamic risk warning of chemical processes are effective ways to reduce accidents.In this study,an early warning method combining time series prediction based on deep learning and quantitative risk assessment by fuzzy mathematics was proposed for the first time.The model predicted the values of chemical process parameters in a certain period in the future and used triangular fuzzy numbers for quantitative risk assessment to achieve risk classification of the predicted data.For the dynamic,time-series,strong nonlinearity,and short prediction period of chemical process data,a Convolutional Neural Network(CNN)was combined with a Long Short-Term Memory(LSTM)network model to form a deep-learning time series prediction model and achieved a 108-minute advance prediction of process parameters.Taking the synthetic ammonia process as the research object,through expert review,six risk parameters such as temperature,pressure,flow rate,and hydrogen to nitrogen ratio were selected through expert review,and each group of time series data was set to 1080 minutes.Sequence data were extracted from the Distributed Control System(DCS)to predict 6 risk parameters.The Support Vector Machine(SVM),CNN,and LSTM models were used to compare and analyze the prediction results,which showed good reliability and accuracy of the method for prediction results of the synthetic ammonia process parameters.Besides,the triangular fuzzy number was used to evaluate the risk of the time series prediction results and obtained the time-series risk change curve to realize the chemical process risk early warning.The method proposed in this study is a useful exploration of the use of artificial intelligence and big data to achieve process control and risk early warning,which is of great significance for obtaining advanced early warning of chemical processes.

关 键 词:安全工程 卷积神经网络-长短期记忆网络(CNN-LSTM) 三角模糊数 参数预测 事故预警 

分 类 号:X937[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象