检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wenlong Fang Chunping Ouyang Qiang Lin Yue Yuan
机构地区:[1]School of Computer,University of South China,Hengyang,Hunan,421001,China
出 处:《Data Intelligence》2023年第3期807-823,共17页数据智能(英文)
基 金:The State Key Program of National Natural Science of China,Grant/Award Number:61533018;National Natural Science Foundation of China,Grant/Award Number:61402220;The Philosophy and Social Science Foundation of Hunan Province,Grant/Award Number:16YBA323;Natural Science Foundation of Hunan Province,Grant/Award Number:2020J4525,2022J30495;Scientific Research Fund of Hunan Provincial Education Department,Grant/Award Number:18B279,19A439.
摘 要:In this paper,we study cross-domain relation extraction.Since new data mapping to feature spaces always differs from the previously seen data due to a domain shif,few-shot relation extraction often perform poorly.To solve the problems caused by cross-domain,we propose a method for combining the pure entity,relation labels and adversarial(PERLA).We first use entities and complete sentences for separate encoding to obtain context-independent entity features.Then,we combine relation labels which are useful for relation extraction to mitigate context noise.We combine adversarial to reduce the noise caused by cross-domain.We conducted experiments on the publicly available cross-domain relation extraction dataset Fewrel 2.o[1]o,and the results show that our approach improves accuracy and has better transferability for better adaptation to cross-domain tasks.
关 键 词:Cross-domain Adversarial Learning Prototypical Networks Pure eatity Relation label META-LEARNING
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15