Three Heads Better than One:Pure Entity,Relation Label and Adversarial Training for Cross-domain Few-shot Relation Extraction  

在线阅读下载全文

作  者:Wenlong Fang Chunping Ouyang Qiang Lin Yue Yuan 

机构地区:[1]School of Computer,University of South China,Hengyang,Hunan,421001,China

出  处:《Data Intelligence》2023年第3期807-823,共17页数据智能(英文)

基  金:The State Key Program of National Natural Science of China,Grant/Award Number:61533018;National Natural Science Foundation of China,Grant/Award Number:61402220;The Philosophy and Social Science Foundation of Hunan Province,Grant/Award Number:16YBA323;Natural Science Foundation of Hunan Province,Grant/Award Number:2020J4525,2022J30495;Scientific Research Fund of Hunan Provincial Education Department,Grant/Award Number:18B279,19A439.

摘  要:In this paper,we study cross-domain relation extraction.Since new data mapping to feature spaces always differs from the previously seen data due to a domain shif,few-shot relation extraction often perform poorly.To solve the problems caused by cross-domain,we propose a method for combining the pure entity,relation labels and adversarial(PERLA).We first use entities and complete sentences for separate encoding to obtain context-independent entity features.Then,we combine relation labels which are useful for relation extraction to mitigate context noise.We combine adversarial to reduce the noise caused by cross-domain.We conducted experiments on the publicly available cross-domain relation extraction dataset Fewrel 2.o[1]o,and the results show that our approach improves accuracy and has better transferability for better adaptation to cross-domain tasks.

关 键 词:Cross-domain Adversarial Learning Prototypical Networks Pure eatity Relation label META-LEARNING 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象