离子液体磁性纳米材料在食品样品前处理中的应用进展  被引量:3

Application Progress of Magnetic Nanomaterials Modified by Ionic Liquid for Sample Pretreatment in Food

在线阅读下载全文

作  者:梁祖培 张燕 刘辉 Liang Zupei;Zhang Yan;Liu Hui(Guangdong Testing Institute for Product Quality Supervision,Foshan 528300,China)

机构地区:[1]广东产品质量监督检验研究院,广东顺德528300

出  处:《广东化工》2023年第21期75-78,共4页Guangdong Chemical Industry

摘  要:食品有害残留物或非法添加问题严重威胁了国民健康,亟需进行重点监管和检测。由于食品基质复杂多样而使检测容易受到干扰,且目标待测物浓度较低,检测前高效的样品前处理技术显得极为重要。离子液体(ionic liquids,ILs)修饰的磁性纳米材料(magnetic nanomaterials,MNMs)不仅具有MNMs本身的超顺磁性和生物相容性好的优良特性,还可以根据目标待测物的性质或特征,设计出高效专一的吸附剂,在样品前处理中实现对目标待测物分子的定向吸附萃取。离子液体磁性纳米材料(ILMNMs)具有可重复利用、对环境友好等优点,在食品有害残留物检测的样品前处理中具有较好的应用潜力。本文综述了ILs修饰MNMs的方法、ILMNMs的优势及其在食品样品前处理中的应用,以期为其在食品安全检测中进一步研究和应用提供参考。The problem of harmful residues or illegal addition in food poses a serious threat to national health,and it is urgent to carry out key supervision and testing.Due to detection interference caused by complex and diverse food substrates and low concentration of target analytes,efficient sample pretreatment techniques before testing are extremely important.Magnetic nanomaterials(MNMs)modified by ionic liquids(ILs)has the excellent characteristics of superparamagnetism and good biocompatibility.What's more,an efficient and specific adsorbent can be designed to realize the directional extraction of the target molecules in the sample pretreatment according to the properties or characteristics of the target analytes.The ILMNMs are reusable and environmentally friendly,which makes them have good application potential in sample pretreatment for detection of harmful food residues.This article reviews the methods of MNMs modified by ILs,the advantages of ILMNMs and their applications in food sample pretreatment.We hope to provide references for further research and application in food safety testing.

关 键 词:离子液体(ILs) 磁性纳米材料(MNMs) 样品前处理 食品安全 应用进展 

分 类 号:TQ[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象