3D reconstruction of movable cultural relics based on salient region optimization  

在线阅读下载全文

作  者:Wang Wenhao Zhao Haiying 

机构地区:[1]School of Information and Communication Engineering,Beijing Information Science and Technology University,Beijing 100192,China [2]School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China

出  处:《The Journal of China Universities of Posts and Telecommunications》2023年第5期11-31,共21页中国邮电高校学报(英文版)

基  金:supported by the National Key Research and Development Project(2021YFF0901700)。

摘  要:How to protect cultural retics is of great significance to the transmission and dissemination of history and culture.Digital 3-dimensional(3D)modeling of cultural relics is an effective way to preserve them.The efficiency and complexity of cultural relic model reconstruction algorithms are significant challenges due to redundant data.To tackle the above issue,a 3D reconstruction algorithm,named COLMAP+LSH,was proposed for movable cultural relics based on salient region optimization.COLMAP+LSH algorithm introduces saliency region detection and locality-sensetive Hashing(LSH)to achieve efficient,accurate,and robust digital 3D modeling of cultural relics.Specifically,400 cultural model data were collected through offline and online collection.COLMAP+LSH algorithm detects the salient region interactively and reduces the number of images in the salient region by feature diffusion.Additionally,COLMAP+LSH algorithm utilizes LSH to calculate the image selection scores and employs the image selection scores to reduce the redundant image.The experiments on the self-constructed cultural relics dataset show that COLMAP+LSH algorithm can efficiently achieve image feature diffusion and ensure the quality of artifact reconstruction while selecting most of the redundant image data.

关 键 词:digitization of cultural relics 3-dimensional(3D)reconstruction saliency region detection locality-sensetive Hashing(LSH) 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] K87[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象