Pointer-prototype fusion network for few-shot named entity recognition  

在线阅读下载全文

作  者:Zhao Haiying Guo Xuan 

机构地区:[1]School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China [2]School of Computer Science,Beijing University of Posts and Telecommunications,Beijing 100876,China

出  处:《The Journal of China Universities of Posts and Telecommunications》2023年第5期32-41,共10页中国邮电高校学报(英文版)

基  金:supported by the National Key Research and Development Project(2021YFF0901701)。

摘  要:Few-shot named entity recognition(NER)aims to identify named entities in new domains using a limited amount of annotated data.Previous methods divided this task into entity span detection and entity classification,achieving good results.However these methods are limited by the imbalance between the entity and non-entity categories due to the use of sequence labeling for entity span detection.To this end,a point-proto network(PPN)combining pointer and prototypical networks was proposed.Specifically,the pointer network generates the position of entities in sentences in the entity span detection stage.The prototypical network builds semantic prototypes of entity types and classifies entities based on their distance from these prototypes in the entity classification stage.Moreover,the low-rank adaptation(LoRA)fine-tuning method,which involves freezing the pre-trained weights and injecting a trainable decomposition matrix,reduces the parameters that need to be trained and saved.Extensive experiments on the few-shot NER Dataset(Few-NERD)and Cross-Dataset demonstrate the superiority of PPN in this domain.

关 键 词:few-shot named entity recognition(NER) pointer network prototypical network low-rank adaptation 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象