检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhao Haiying Guo Xuan
机构地区:[1]School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China [2]School of Computer Science,Beijing University of Posts and Telecommunications,Beijing 100876,China
出 处:《The Journal of China Universities of Posts and Telecommunications》2023年第5期32-41,共10页中国邮电高校学报(英文版)
基 金:supported by the National Key Research and Development Project(2021YFF0901701)。
摘 要:Few-shot named entity recognition(NER)aims to identify named entities in new domains using a limited amount of annotated data.Previous methods divided this task into entity span detection and entity classification,achieving good results.However these methods are limited by the imbalance between the entity and non-entity categories due to the use of sequence labeling for entity span detection.To this end,a point-proto network(PPN)combining pointer and prototypical networks was proposed.Specifically,the pointer network generates the position of entities in sentences in the entity span detection stage.The prototypical network builds semantic prototypes of entity types and classifies entities based on their distance from these prototypes in the entity classification stage.Moreover,the low-rank adaptation(LoRA)fine-tuning method,which involves freezing the pre-trained weights and injecting a trainable decomposition matrix,reduces the parameters that need to be trained and saved.Extensive experiments on the few-shot NER Dataset(Few-NERD)and Cross-Dataset demonstrate the superiority of PPN in this domain.
关 键 词:few-shot named entity recognition(NER) pointer network prototypical network low-rank adaptation
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147