检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丛爽[1] CONG Shuang(Department of Automation,University of Science and Technology of China,Hefei 230027,China)
出 处:《科技导报》2023年第19期48-58,共11页Science & Technology Review
基 金:国家自然科学基金项目(61973290)。
摘 要:随着深度学习的广泛应用,神经网络模型的数据自生成以及概率模拟等功能在量子态重构与估计方面的应用得到人们关注。通过对量子态的各种不同的数学表示,引导到神经网络量子态的不同表示;从量子态不同物理变量之间的关系,推导出相应神经网络结构上的输入/输出之间的非线性映射关系,为采用不同类型的神经网络模型根据自身数据自生成以及概率模拟功能,实现量子态估计应用,提供网络函数关系及其数据生成的理论设计基础。With wide application of deep learning,applications of data self-generation and probability simulation of neural network models in quantum state reconstruction and estimation have attracted people's attention.In this paper,from various mathematical representations of quantum states,we derive different representations of quantum states in neural networks.Nonlinear mapping relationships between input/output on corresponding neural network structures are deduced from the relationship between different physical variables of quantum state.This work provides a theoretical design basis of network function relationship and data generation for using different types of neural network models to realize quantum state estimation by means of their own data self-generation and probability simulation function.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222