Dark Korteweg-De Vrise System and Its Higher-Dimensional Deformations  被引量:1

在线阅读下载全文

作  者:祝思妤 孔德兴 楼森岳 Si-Yu Zhu;De-Xing Kong;and Sen-Yue Lou(Zhejiang Qiushi Institute for Mathematical Medicine,Hangzhou 311121,China;School of Physical Science and Technology,Ningbo University,Ningbo 315211,China)

机构地区:[1]Zhejiang Qiushi Institute for Mathematical Medicine,Hangzhou 311121,China [2]School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

出  处:《Chinese Physics Letters》2023年第8期1-5,共5页中国物理快报(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.12235007,12090020,11975131,12090025)。

摘  要:The new dimensional deformation approach is proposed to generate higher-dimensional analogues of integrable systems.An arbitrary(K+1)-dimensional integrable Korteweg-de Vries(Kd V)system,as an example,exhibiting symmetry,is illustrated to arise from a reconstructed deformation procedure,starting with a general symmetry integrable(1+1)-dimensional dark Kd V system and its conservation laws.Physically,the dark equation systems may be related to dark matter physics.To describe nonlinear physics,both linear and nonlinear dispersions should be considered.In the original lower-dimensional integrable systems,only liner or nonlinear dispersion is included.The deformation algorithm naturally makes the model also include the linear dispersion and nonlinear dispersion.

关 键 词:INTEGRABLE nonlinear DISPERSION 

分 类 号:P159[天文地球—天文学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象