检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄宇铭 葛冰峰 侯泽强 杨克巍[1] HUANG Yuming;GE Bingfeng;HOU Zeqiang;YANG Kewei(College of Systems Engineering,National University of Defense Technology,Changsha 410073,China)
出 处:《系统工程理论与实践》2023年第9期2714-2725,共12页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(71971213,72071206,72231011);湖南省研究生科研创新项目(CX20210003)。
摘 要:多无人机集群协同空战将是未来重要的空中作战样式.本文针对多无人机空战的对抗性、复杂性和协同性等特点,提出了基于冲突分析图模型的多无人机协同空战博弈方法,以提升空战效能.首先,考虑多无人机空战的协同作用,构建单机空战优势和多机协同空战优势评估模型;其次,基于冲突分析图模型理论,建立考虑多种稳定性定义的多无人机空战博弈模型,并在模型中引入基于“伤损比”的收益函数;最后,设计了两阶段多机空战博弈目标分配方案求解算法,即利用多目标优化算法获取多机空战对抗场景的帕累托前沿,再通过冲突分析图模型方法求解帕累托前沿中的最优均衡目标分配方案.算例结果表明,本文所提模型和方法能够有效解决多无人机协同空战问题,所得到的最优目标分配方案优于传统仅考虑纳什稳定性的无人机博弈模型,对实际空战具有一定的指导意义.Multi-unmanned aerial vehicle(UAV)cooperative air combat will be an important air combat style in the future.Considering the antagonism,complexity and coordination,a gaming approach based on graph model for conflict resolution(GMCR)for multi-UAV cooperative air combat is proposed to improve its effectiveness.Firstly,the single-UAV air combat superiority model and multi-UAV air combat superiority model are proposed by taking the synergism into consideration.Secondly,a multi-UAV air combat gaming model with a group of stability definitions is developed based on GMCR,and a payoff function using“damage loss ratio”is introduced into the model.Finally,a two-stage multi-UAV air combat gaming target assignment algorithm is designed,where a multi-objective optimization algorithm is applied to obtain the Pareto frontier of multi-UAV air combat confrontation scenario,and then the optimal equilibrium target allocation schemes are determined by GMCR.The results show that the proposed model and method can effectively solve the multi-UAV cooperative air combat problem,which is proved to have certain practical significance for air combat.More specifically,the optimal target assignment schemes obtained by the proposed approach are superior to the traditional UAV gaming model that only considers Nash stability.
分 类 号:V279[航空宇航科学与技术—飞行器设计] O225[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7