ISOMETRY AND PHASE-ISOMETRY OF NON-ARCHIMEDEAN NORMED SPACES  

在线阅读下载全文

作  者:王瑞东 姚文婷 Ruidong WANG;Wenting YAO(College of Science,Tianjin University of Technology,Tianjin 300384,China)

机构地区:[1]College of Science,Tianjin University of Technology,Tianjin 300384,China

出  处:《Acta Mathematica Scientia》2023年第6期2377-2386,共10页数学物理学报(B辑英文版)

基  金:supported by the Natural Science Foundation of China (12271402);the Natural Science Foundation of Tianjin City (22JCYBJC00420)。

摘  要:In this paper,we study isometries and phase-isometries of non-Archimedean normed spaces.We show that every isometry f:Sr(X)→Sr(X),where X is a finite-dimensional non-Archimedean normed space and Sr(X)is a sphere with radius r∈||X||,is surjective if and only if is spherically complete and k is finite.Moreover,we prove that if X and Y are non-Archimedean normed spaces over non-trivially non-Archimedean valued fields with|2|=1,any phase-isometry f:X→Y is phase equivalent to an isometric operator.

关 键 词:non-Archimedean normed spaces isometry extension Wigner's theorem 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象