A MULTIPLE q-EXPONENTIAL DIFFERENTIAL OPERATIONAL IDENTITY  

在线阅读下载全文

作  者:刘治国 Zhiguo LIU(School of Mathematical Sciences,Key Laboratory of MEA(Ministry of Education)&Shanghai Key Laboratory of PMMP,East China Normal University,Shanghai 200241,China)

机构地区:[1]School of Mathematical Sciences,Key Laboratory of MEA(Ministry of Education)&Shanghai Key Laboratory of PMMP,East China Normal University,Shanghai 200241,China

出  处:《Acta Mathematica Scientia》2023年第6期2449-2470,共22页数学物理学报(B辑英文版)

基  金:supported by the National Natural Science Foundation of China (11971173);the Science and Technology Commission of Shanghai Municipality (22DZ2229014).

摘  要:Using Hartogs’fundamental theorem for analytic functions in several complex variables and q-partial differential equations,we establish a multiple q-exponential differential formula for analytic functions in several variables.With this identity,we give new proofs of a variety of important classical formulas including Bailey’s 6ψ6 series summation formula and the Atakishiyev integral.A new transformation formula for a double q-series with several interesting special cases is given.A new transformation formula for a 3ψ3 series is proved.

关 键 词:q-hypergeometric series q-exponential differential operator Bailey's 6b6 summation double q-hypergeometric series q-partial differential equation 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象