检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄梦圆 刘冰 刘小浩 Huang Mengyuan;Liu Bing;Liu Xiaohao(School of Chemical and Material Engineering,Jiangnan University,Jiangsu Wuxi 214122)
机构地区:[1]江南大学化学与材料工程学院,江苏无锡214122
出 处:《化工时刊》2023年第5期1-5,共5页Chemical Industry Times
基 金:国家自然科学基金(21802054);江苏省自然科学基金(BK20180587)。
摘 要:本研究使用机器学习方法对钴基费托合成催化剂相关文献数据进行分析,研究催化剂结构及反应条件对费托反应活性的影响。收集了近年钴基费托合成催化剂相关文献,对催化剂组成及其物理性质、制备条件、评价条件进行统计。基于机器学习方法,采用不同回归模型对数据进行分析。结果表明随机森林算法对数据的拟合程度最高,R2值达到0.984。特征重要性分析表明,催化剂中Co3O4颗粒直径对反应选择性影响最高。部分依赖图表明较小的Co3O4粒径有利于C2~C4的选择性,反之则有利于C5+产物的选择性。本研究为进一步理解钴基费托合成催化剂的结构与性能关系提供了理论依据。In this study,machine learning method was introduced to analyze the literature data that related to cobalt-based Fischer-Tropsch catalysts,and to study the relationship between catalysts structure and activity.The relevant literatures of cobalt-based Fischer-Tropsch catalysts in recent years were summarized,and the composition,physical properties,preparation conditions and evaluation conditions of the catalyst were analyzed.Based on machine learning method,different regression models were used to analyze the data.The results show that the random forest algorithm has the highest fitting degree to the data,and its R^(2) value reaches 0.984.The feature importance analysis shows that the diametre of Co_(3)O_(4) particals has the highest importance on the reaction selectivity.The partial dependence plot shows that smaller Co_(3)O_(4) is beneficial to the selectivity of C_(2)-C_(4) product,while the higher content is beneficial to the selectivity of C_(5)+product.This work provides theoretical insights for further understanding the relationship between structure and performance of cobalt-based Fischer-Tropsch catalysts.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198