检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾国文[1] 钟玲 罗琼华 ZENG Guo-wen;ZHONG Ling;LUO Qiong-hua(China Mobile Group Guangdong Co.,Ltd.Dongguan Branch,Dongguan 523129,China)
机构地区:[1]中国移动通信集团广东有限公司东莞分公司,东莞523129
出 处:《电信工程技术与标准化》2023年第11期49-55,共7页Telecom Engineering Technics and Standardization
摘 要:为了能更好地开展移动通信客户分群运营和客户流失预警,本文从多个维度分析客户业务使用“不健康”的复杂因素,引入标准化和熵值法重组指标变量,采用基于标准分的分段排名算法,计算客户的长期趋势、短期趋势、现状水平和弹性空间,预测客户离网概率并据此进行段内二次排序,实现客户“健康状态”的精准定位,最终根据“健康程度”细分客群,并开展分群施策,向“健康客户”要收入,向“高危客户”争保有。通过历史数据证明,本算法识别的“高危群体”离网率高达44.7%,并集中分布在长期趋势为下降型的客群里,证明了算法的准确性。In order to better carry out mobile communication customer clustering operation and customer churn warning,this article analyzing the complex factors of unhealthy customer business usage from multiple dimensions.Introducing standardization and entropy method to restructure indicator variables,adopting a segmented ranking algorithm based on standard scores,calculate customers'long-term trends,short-term trends,current levels,and elastic space,predict the probability of customer churn and perform secondary sorting within the segment based on it,accurate positioning of customer“health status”.Final segmentation of customer groups based on"health level",and carry out group based policy implementation,seeking income from"healthy customers"and competing for retention from"high-risk customer".Prove through historical data,the dropout rate of the"high-risk custome"identifi ed by this algorithm is as high as 44.7%,and concentrated in customer groups with a long-term downward trend,proved the accuracy of the algorithm.
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.234.109