检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨鸿玺 高安康 王一达 白洁[2] 张勇[2] 程敬亮[2] 杨光[1] YANG Hongxi;GAO Ankang;WANG Yida;BAI Jie;ZHANG Yong;CHENG Jingliang;YANG Guang(Shanghai Key Laboratory of Magnetic Resonance,School of Physics and Electronic Science,East China Normal University,Shanghai 200062,China;Department of MRI,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450000,China)
机构地区:[1]华东师范大学物理与电子科学学院上海市磁共振重点实验室,上海200062 [2]郑州大学第一附属医院磁共振科,河南郑州450000
出 处:《中国医学物理学杂志》2023年第11期1350-1355,共6页Chinese Journal of Medical Physics
基 金:国家自然科学基金(61731009)。
摘 要:基于多序列MRI建立无侵入性、准确、客观的胶质瘤相关癫痫诊断模型。回顾性地收集403例胶质瘤患者的T_(1)WI、T_(2)WI、T_(1)Gd和T_(2)-FLAIR图像。使用预训练的深度学习模型分割包含胶质瘤及瘤周水肿的感兴趣区域,从中提取一阶统计学特征、形态学特征和纹理特征。采用皮尔逊相关系数、递归特征消除等方法进行特征筛选,并将特征分类建立子模型,最终建立含有15个特征的影像模型用于癫痫诊断,在独立测试集上获得0.836的AUC值。在影像模型的基础上加入年龄及性别进行重新建模,获得含有14个特征的临床-影像模型,在独立测试集上获得0.872的AUC值。结合基本临床信息和多序列MRI影像特征的组学模型可以作为胶质瘤相关癫痫的有效诊断工具。A non-invasive,accurate and objective model is developed based on multi-sequence MRI for diagnosing glioma associated epilepsy.The T_(1)WI,T_(2)WI,T_(1)Gd and T_(2)-FLAIR images of 403 glioma patients are collected retrospectively.A pre trained deep learning model is used to segment the region of interest containing the tumor and peritumoral edema,from which the first-order statistical characteristics,morphological features and texture features are extracted.After feature selection using Pearson correlation coefficient,recursive feature elimination and other methods,a scout model is built for each group of features,and finally a radiomics model containing 15 features is established for epilepsy diagnosis.The radiomics model achieves an AUC of 0.836 on the independent test set.A clinical-radiomics model containing 14 features is further built by incorporating basic clinical information(age and gender)to the radiomics model for remodeling,and it achieves an AUC of 0.872 on the independent test set.The model combining basic clinical information and multi-sequence MRI radiomics signatures can serve as an effective tool for the diagnosis of glioma-associated epilepsy.
分 类 号:R318[医药卫生—生物医学工程] R739.41[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222