密度泛函理论计算筛选锂硫电池用单原子催化剂  

Promising single-atom catalysts for lithium-sulfur batteries screened by theoretical density functional theory calculations

在线阅读下载全文

作  者:宋策 胡方圆 张天鹏 刘思洋 江万源 宋子晖 王哲 姚曼 蹇锡高 Ce Song;Fangyuan Hu;Tianpeng Zhang;Siyang Liu;Wanyuan Jiang;Zihui Song;Zhe Wang;Man Yao;Xigao Jian(School of Materials Science and Engineering,Key Laboratory of Energy Materials and Devices(Liaoning Province),Dalian University of Technology,Dalian 116024,China;State Key Laboratory of Fine Chemicals,Frontiers Science Center for Smart Materials Oriented Chemical Engineering,School of Chemical Engineering,Technology Innovation Center of High Performance Resin Materials(Liaoning Province),Dalian University of Technology,Dalian 116024,China)

机构地区:[1]School of Materials Science and Engineering,Key Laboratory of Energy Materials and Devices(Liaoning Province),Dalian University of Technology,Dalian 116024,China [2]State Key Laboratory of Fine Chemicals,Frontiers Science Center for Smart Materials Oriented Chemical Engineering,School of Chemical Engineering,Technology Innovation Center of High Performance Resin Materials(Liaoning Province),Dalian University of Technology,Dalian 116024,China

出  处:《Science China Materials》2023年第11期4411-4418,共8页中国科学(材料科学(英文版)

基  金:supported by the National Outstanding Youth Science Fund(52222314);the National Youth Science Fund(52203022);the China National Petroleum Corporation Innovation Found(2021DQ02-1001);Liao Ning Revitalization Talents Program(XLYC1907144);Xinghai Talent Cultivation Plan(X20200303);the Fundamental Research Funds for the Central Universities(DUT22JC02,DUT22LAB605)。

摘  要:探索具有高催化作用的活性中心结构,对于开发锂硫电池用单原子催化剂(SACs)至关重要.基于密度泛函理论计算,本工作提出了一种新型吡咯氮配位结构,用于负载3d过渡金属原子,以设计出高性能SACs.相比于传统的吡啶氮配位结构,该吡咯氮配位结构可实现对多硫化物更高的吸附及催化转化作用,从而提升锂硫电池活性物质的利用率、循环稳定性及倍率性能.基于对不同配位结构中的金属原子d轨道与多硫化物中硫原子p轨道杂化方式的分析,本工作阐明了吡咯氮配位结构可对多硫化物实现更强吸附作用的原因.此外,采用数据驱动的研究手段,探索出影响多硫化物催化转化效率的本征因素.因此,本工作提出了新型锂硫电池用SACs活性中心结构,并揭示了SACs的性能调控机制,为锂硫电池用SACs的设计提供了新策略.Exploring prominent active centers with high catalytic activity is essential for developing single-atom cata-lysts(SACs)towards lithium-sulfur batteries(LSBs).Based on density functional theory calculations,a novel pyrrolic-N-in-corporated coordination environment is proposed for ac-commodating 3d transition metal atoms to design high-performance SACs.Compared with the commonly concerned pyridinic-N coordination structure,pyrrolic-N-incorporated coordination displays stronger adsorption of lithium poly-sulfide(LiPSs)and higher catalytic efficiencies for LiPSs conversion,which can improve the sulfur utilization,cycle stability,and rate capability of LSBs.Hybridization patterns between the p orbitals from sulfur species and d orbitals from the centric metal atom embedded in different coordination environments are disclosed to interpret the origin of higher adsorption strength of LiPSs from pyrrolic-N-incorporated active centers.To further reveal mechanistic factors beneath the catalytic activity,data-driven efforts have been exerted to clarify the relationship between the intrinsic features of active centers and the catalytic efficiencies on LiPSs conversions.Thereby,promising SACs with novel active centers and the underlying mechanisms on modulating the performance of SACs by active centers are unveiled,which offers design strategies for advanced SACs in LSBs.

关 键 词:lithium-sulfur battery single-atom catalyst density functional theory data-driven approach pyrrolic-N 

分 类 号:O643.36[理学—物理化学] TM912[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象