检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐宇浩 季嘉敏 郭全兵 吴宇 丁涛 毛力[1,2] 张顺平 徐红星 Yuhao Xu;Jiamin Ji;Quanbing Guo;Yu Wu;Tao Ding;Li Mao;Shunping Zhang;Hongxing Xu(School of Physics and Technology,Wuhan University,Wuhan 430072,China;Wuhan Institute of Quantum Technology,Wuhan 430205,China;School of Microelectronics,Wuhan University,Wuhan 430072,China;Henan Academy of Sciences,Zhengzhou 450046,China)
机构地区:[1]武汉大学物理科学与技术学院,武汉430072 [2]武汉量子技术研究院,武汉430205 [3]武汉大学微电子学院,武汉430072 [4]河南省科学院,郑州450046
出 处:《科学通报》2023年第31期4086-4102,共17页Chinese Science Bulletin
基 金:国家自然科学基金(12134011,12374356);国家重点研发计划(2021YFA1401104,2020YFA0211300);湖北省重点研发计划(2022BAA016)资助。
摘 要:表面等离激元是一种由电磁波与固体中的自由电子集体振荡耦合形成的元激发,可以将光场束缚在金属与电介质界面亚波长尺度范围内,导致电磁场强度极大增强,这是等离激元光子学领域诸多物理效应和器件应用的基础.由两个或以上紧邻的金属纳米结构构成的纳米间隙是最典型的等离激元纳腔,具有最优异的光场束缚能力,可以将光场压缩到纳米尺度甚至是原子尺度.这种结构在亚纳米级的空间尺度上,隧穿、空间非局域等量子效应极其显著,导致纳腔等离激元具有许多新奇的量子特性,为新型光电器件的设计与制造提供了新的平台.尤其是最近10年来,纳腔量子等离激元在基础和应用方面都迎来了蓬勃的发展.本文首先简述了等离激元的量子化处理,回顾了亚纳米级间隙纳腔中的量子效应,重点介绍了近年在基于等离激元纳腔的量子隧穿发光、光与物质相互作用、量子光源以及精密传感等应用方向的进展,并展望了纳腔量子等离激元未来的应用方向和发展前景.Surface plasmons(SPs) are electromagnetic excitations coupled with electron waves in solid,which lead to the large negative dielectric constant of noble metals in the visible light range.They provide the ability to trap light in the nanoscale interface between the metal and the dielectric interface.Notably,ultrathin dielectric gaps between metals can trap plasmonic optical modes with surprisingly low loss and with volumes below a few tens of nm~3,making it the most effective and accessible method to achieve field confinement.Plasmonic nanostructures gained rapid research interests as routes to optical devices beyond the diffraction limit of light,yielding viable nanophotonic devices,including optical metamaterials,biochemical sensing,plasmon chemistry,and nanophotonic light sources.The rapid progress in these applications has been made feasible through the availability of an extensive array of experimental tools for nanoscale fabrication,as well as robust electromagnetic simulation methods for theoretical analysis.In the meanwhile,significant interest has been devoted to the quantum properties of gap plasmons and quantum plasmonic devices that operate at the quantum level.Gap plasmonics not only helps to reveal novel quantum behaviors,which enhances fundamental understanding of quantum science,but also provides a platform for designing and manufacturing various quantum optoelectronic devices,making it an important part of the field of quantum plasmonics.Quantum plasmonics is a rapidly growing field of research that involves the study of quantum properties of light and its interaction with matter at the nanoscale.In particular,the past decade has witnessed substantial advancements in both the fundamental and applied realms of quantum plasmonics.This review presents a comprehensive overview of recent advancement in the field of quantum plasmonics within nanocavities,spanning from scientific understanding to technological applications.The discussion commences with an exploration of the quantum phenomena in plasmonic
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7