基于IF-GEP的河湾最大冲刷深度预测方法  

Maximum Erosion Depth Prediction of River Bend Based on IF-GEP

在线阅读下载全文

作  者:陈骏峰 肖丽蓉 周晓泉[1] 黄宇航 CHEN Jun-feng;XIAO Li-rong;ZHOU Xiao-quan;HUANG Yu-hang(State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University,Chengdu 610065,China)

机构地区:[1]四川大学水力学及山区河流开发保护国家重点实验室,四川成都610065

出  处:《水电能源科学》2023年第9期19-22,共4页Water Resources and Power

摘  要:为解决传统河流流经弯道的最大冲刷深度预测过程中存在的不足,将孤立森林(IF)和基因表达式编程(GEP)方法相结合,建立了一个基于IF的GEP河湾最大冲刷深度预测模型(IF-GEP),并将该模型与传统GS-SVR和RF模型及现有经验公式进行对比。结果表明,IF-GEP预测模型在测试集上取得了较好的预测效果,且预测精度明显高于现有公式及传统的GS-SVR和RF模型。最后将该预测模型应用于多条不同河流的预测中,IF-GEP预测模型的预测结果与实际测量值较吻合,说明该预测模型具有良好的预测能力和较高的泛化性能。In order to address the limitations in forecasting the maximum scour depth of conventional river bends,this study amalgamated the methodologies of isolated forest(IF)and gene expression programming(GEP).An IF-GEP model for predicting the maximum scour depth of river bends was established.The validation results demonstrate that the IF-GEP prediction model surpasses existing formulations in terms of its accuracy on the test set.Moreover,it exhibits enhanced predictive performance compared to the traditional GS-SVR and RF models.Application of the prediction model to various rivers yielded remarkably close results to the actual measured values,affirming its strong predictive capability and robust generalization performance.

关 键 词:河湾最大冲刷深度 孤立森林 基因表达式编程 GS-SVR RF 

分 类 号:TV91[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象