检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈海霞[1] 贾志娟[2] 赵云平 CHEN Haixia;JIA Zhijuan;ZHAO Yunping(Zhengzhou Vocational and Technical College,Zhengzhou,Henan 450000,China;Zhengzhou Normal University,Zhengzhou,Henan 450044,China;Henan University of Technology,Zhengzhou,Henan 450000,China)
机构地区:[1]郑州职业技术学院,河南郑州450000 [2]郑州师范学院,河南郑州450044 [3]河南工业大学,河南郑州450000
出 处:《食品与机械》2023年第10期138-145,共8页Food and Machinery
基 金:河南省科技攻关计划项目(编号:212102210415)。
摘 要:目的:为了提高苹果等级判定模型的精度,建立苹果等级判定方法。方法:提出一种多信息融合和蜻蜓算法改进深度置信网络的苹果等级判定模型。对苹果图像进行数据增强、归一化、高斯滤波、灰度化等预处理,提取苹果图像的HSV颜色特征、LBP纹理特征和HOG形状特征。针对DBN模型性能受参数选择的影响,运用DA算法优化选择DBN模型的网络参数,提出一种多信息融合和DA-DBN的苹果等级判定模型。结果:与GA-DBN、PSO-DBN、GWO-DBN和DBN相比,基于DA-DBN的苹果等级判定模型的精度最高。结论:蜻蜓算法优化DBN模型可以有效提高苹果等级判定模型的精度。Objective:In order to improve the precision of apple grade judgment model,the method of apple grade judgment was established.Methods:A decision model of apple rank based on multi-information fusion and dragonfly algorithm was proposed.Firstly,the HSV color feature,LBP texture feature and HOG shape feature of apple image were extracted by pre-processing such as data enhancement,normalization,Gauss filter and grayscale.Secondly,the performance of DBN model was affected by the selection of parameters,the network parameters of DBN model were optimized by DA algorithm,and a multi-information fusion and DA-DBN model for determining apple rank wws proposed.Results:Compared with GA-DBN,PSO-DBN,GWO-DBN and DBN,the model based on DA-DBN had the highest precision.Conclusion:The DBN model is optimized by dragonfly algorithm which can effectively improve the accuracy of apple rank determination model,which provides a new method for apple rank determination.
关 键 词:深度置信网络 蜻蜓算法 纹理特征 颜色特征 形状特征 苹果
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] S226.5[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222