检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李书剑 刘小生[1] LI Shu-jian;LIU Xiao-sheng(School of Civil and Surveying Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
机构地区:[1]江西理工大学土木与测绘工程学院,江西赣州341000
出 处:《水电能源科学》2023年第11期82-85,共4页Water Resources and Power
基 金:国家自然科学基金项目(42171437)。
摘 要:针对大坝预测中采用深度学习方法难以确定最优参数和精度不高等问题,改进了麻雀搜索算法(SSA),采用改进麻雀搜索算法(ISSA)对门控循环单元(GRU)的参数进行寻优,构建了基于ISSA-GRU的大坝变形预测模型,并将该模型应用于黄河上游青海段龙羊峡大坝变形预测中。结果表明,基于ISSA-GRU的大坝变形预测模型具有更高的预测精度和稳定性,可为大坝变形预测提供参考。Aiming at the problems of difficulty in determining the optimal parameters and low accuracy of the deep learning method in dam prediction,the sparrow search algorithm(SSA) was improved,and the parameters of the gated recurrent unit(GRU) were optimized by the improved sparrow search algorithm(ISSA).Then a dam deformation prediction model based on the ISSA-GRU was constructed,and this model was applied to the deformation prediction of the Longyangxia Dam of Qinghai Section in the upper reaches of the Yellow River.The results show that the dam deformation prediction model based on ISSA-GRU has higher prediction accuracy and stability,which can be used as a reference for dam deformation prediction.
关 键 词:大坝变形预测 门控循环网络 改进麻雀搜索算法 预测精度
分 类 号:TV698.11[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.55.178