检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭罗曼 张海洋 王文鑫[1,2,3] 白莎莎 刘炫 赵长明 PENG Luoman;ZHANG Haiyang;WANG Wenxin;BAI Shasha;LIU Xuan;ZHAO Changming(Key Laboratory of Optoelectronic Imaging Technology and System(Ministry of Education),Beijing 100081,China;School of Optoelectronics,Beijing Institute of Technology,Beijing 100081,China;School of Optoelectronics,Beijing University of Technology,Beijing 100081,China)
机构地区:[1]光电成像技术与系统教育部重点实验室,北京100081 [2]信息光子技术工业和信息化部重点实验室,北京100081 [3]北京理工大学光电学院,北京100081
出 处:《应用光学》2023年第6期1324-1331,共8页Journal of Applied Optics
基 金:“科技冬奥”重点专项国家科学化训练基地建设关键技术研究与示范基金资助项目(2018YFF0300800)。
摘 要:相邻障碍物的分割是无人驾驶领域的技术难点,低线激光雷达点云稀疏,无法聚类远距离物体,但激光雷达线束越多越昂贵。为了实现低成本聚类分割相邻障碍物,实验场景选取常用交通场景对象相邻的人/人、人/车,提出了一种基于多帧融合的相邻障碍物分割方法。基于惯性测量单元、激光雷达融合多帧点云,解决了低线激光雷达因分辨率低而无法聚类远距离相邻行人的问题。提出改进的欧式聚类,加入自适应阈值和向量角度约束两个新的分割标准,提高相邻障碍物的分割效果。实验结果表明,该方法具有成本低、聚类精准等特点,与单帧传统欧式聚类算法相比,该方法针对相邻障碍物分割的准确度提升约30.7%,对低线激光雷达在障碍物聚类以及后续的检测具有一定参考意义。The segmentation of adjacent obstacles is a technical difficulty in the field of driverless vehicles.The low-line light detection and ranging(LIDAR)point clouds are sparse,and they can't cluster long-distance objects.However,the more LIDAR wire beams,the more expensive.In order to realize low-cost clustering segmentation of adjacent obstacles,the adjacent people and vehicles of common traffic scene objects were selected as the experimental scenes,and a adjacent-obstacle segmentation method based on multi-frame fusion was proposed.Based on the inertial measurement unit(IMU)and LIDAR fusion of multi-frame point cloud,it could solve the problem that low-line LIDAR is unable to cluster long-distance adjacent pedestrians due to its low resolution.The improved Euclidean clustering was proposed,and two new segmentation criteria of adaptive threshold and vector angle constraint were applied into this algorithm to improve the segmentation effect of adjacent obstacles.The experimental results show that this method has the characteristics of low cost and accurate clustering.Compared with the single-frame Euclidean cluster,the accuracy of this method for segmenting adjacent obstacles improves by about 30.7%,which has certain reference significance for the clustering and detection of low-line LIDAR in obstacles.
关 键 词:多帧融合 自适应阈值 相邻障碍物分割 稀疏点云聚类
分 类 号:TN249[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90