检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王渴心 周军[1] 王岩 WANG Kexin;ZHOU Jun;WANG Yan(School of Electrical Engineering,Northeast Electric Power University,Jilin 132012,China;State Grid Jilin Electric Power Company Jilin Power Supply Company,Jilin 132012,China)
机构地区:[1]东北电力大学电气工程学院,吉林吉林132012 [2]国网吉林省电力公司吉林供电公司,吉林吉林132012
出 处:《电气应用》2023年第11期16-25,I0004,I0005,共12页Electrotechnical Application
基 金:吉林省科技发展计划项目(20230203033SF)。
摘 要:准确估计锂离子电池的健康状态(State of Health,SOH)对储能系统的安全稳定运行至关重要。针对传统估计方法准确度较低的问题,提出一种基于鹈鹕优化算法和极限学习机(POA-ELM)的SOH估计方法。首先,选取充放电过程中的四个健康特征,并采用皮尔逊相关性分析来量化它们与电池SOH的相关性。然后,建立ELM模型来映射健康特征与电池SOH之间的关系。针对ELM模型中超参数寻优问题,采用POA算法进行解决。最后在NASA电池数据集上进行试验分析,并与其他经典超参数寻优算法进行了比较。实验结果表明该方法能够实现SOH的准确估计,具有较高的估计准确度,估计误差稳定在2%以内。Accurately estimating the state of health(SOH)of lithium-ion batteries is crucial for the safe and stable operation of energy storage systems.A SOH estimation method based on Pelican optimization algorithm and extreme learning machine(POA-ELM)is proposed to address the problem of low accuracy in traditional estimation methods.Firstly,select four health characteristics during the charging and discharging process,and use Pearson correlation analysis to quantify their correlation with battery SOH.Then,establish an ELM model to map the relationship between health features and battery SOH.The POA algorithm is used to solve the hyperparameter optimization problem in the ELM model.Finally,experimental analysis was conducted on the NASA battery dataset and compared with other classic hyperparameter optimization algorithms.The experimental results show that this method can achieve accurate estimation of SOH with high estimation accuracy,and the estimation error is stable within 2%.
分 类 号:TM912[电气工程—电力电子与电力传动] TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30