Least-squares reverse time migration in visco-acoustic media based on symplectic stereo-modeling method  

在线阅读下载全文

作  者:LI Jingshuang ZHANG Xiangjia HE Xijun ZHOU Yanjie 

机构地区:[1]School of Science,China University of Mining and Technology,Beijing 100083,China [2]School of Mathematics and Statistics,Beijing Technology and Business University,Beijing 100048,China

出  处:《Global Geology》2023年第4期237-250,共14页世界地质(英文版)

基  金:Supported by projects of National Natural Science Foundation of China(Nos.41604105,41974114);Fundamental Research Funds for Central Universities(No.2020YQLX01).

摘  要:The authors proposed a symplectic stereo-modeling method(SSM)in the Birkhoffian dynam-ics and apply it to the visco-acoustic least-squares reverse time migration(LSRTM).The SSM adopts ste-reo-modeling operator in space and symplectic Runge-Kutta scheme in time,resulting in great ability in suppressing numerical dispersion and long-time computing.These advantages are further confirmed by numerical dispersion analysis,long-time computation test and computational efficiency comparison.After these theoretical analyses and experiments,acoustic and visco-acoustic LSRTM are tested and compared between SSM method and the conventional symplectic method(CSM)using the fault and marmousi models.Meanwhile,dynamic source encoding and exponential decay moving average gradients method are adopted to reduce the computation cost and improve the convergence rate.The imaging results show that LSRTM based on visco-acoustic wave equations effectively takes into account the influence of viscosity can therefore compensate for the amplitude attenuation.Besides,SSM method not only has high numerical accuracy and computational efficiency,but also performs effectively in LSRTM.

关 键 词:least-squares reverse time migration visco-acoustic equation Birkhoffian dynamic symplectic stereo-modeling dynamic source encoding 

分 类 号:P618.13[天文地球—矿床学] P631.4[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象