检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴琪文 周学良[1] 吴瑶[1] WU Qiwen;ZHOU Xueliang;WU Yao(School of Mechanical Engineering,Hubei University of Automotive Technology,Shiyan 442002,Hubei,China)
机构地区:[1]湖北汽车工业学院机械工程学院,湖北十堰442002
出 处:《机械科学与技术》2023年第11期1895-1903,共9页Mechanical Science and Technology for Aerospace Engineering
基 金:国家自然科学基金项目(52075107);湖北省高等学校优秀中青年科技创新团队计划项目(T2020018);第64批中国博士后科学基金项目(2018M6409120);湖北汽车工业学院博士科研启动基金项目(BK201601)。
摘 要:刀具状态监测是实现加工过程智能化的关键技术之一,其状态直接影响到工件的表面质量和加工效率。在切削加工过程中刀具的细微崩刃不易察觉但却对工件表面质量影响较大,针对该问题提出了一种基于多尺度卷积胶囊网络的方法实现刀具破损状态监测。首先通过采集振动信号来表征刀具的状态,然后在模型中通过多尺度卷积层初步提取信号特征,随后将特征胶囊化输入胶囊层中进一步挖掘特征中的隐藏信息,最终通过分类层识别刀具在不同切削参数下是否发生细微崩刃。实验结果表明,该方法能够在噪声环境中准确识别不同切削参数下切削刃是否微崩,并且识别精度优于卷积神经网络(Convolutional neural network,CNN)和宽核卷积神经网络(Convolution neural network with wide first-layer kernels,WDCNN)。Tool condition monitoring is one of the key technologies to improve the intelligent process of CNC machine tools.The status of the tool affects the surface quality and efficiency of the processing directly.During the machining process,the slightly tipping of tool is not easy to detect,but it has a greater impact on the surface quality of the workpiece.To solve this problem,a method based on a multi-scale convolutional capsule network is proposed to monitor whether the tool is slightly chipped.Firstly,the vibration signal is collected to characterize the state of the tool,and then the signal features are extracted in the model through a multi-scale convolutional layer initially,and then the features are encapsulated into the capsule layer to explore the hidden information in the features,and finally the classification layer is used to identify the tool status whether micro chipping occurs under different cutting parameters.The experimental results show that the method can accurately identify the chipping of the cutting edge under different working conditions in a noisy environment,and the recognition accuracy is better than that of CNN(Convolutional neural network)and WDCNN(Convolution neural network with wide first-layer kernels).
分 类 号:TH165.4[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.192.62