ISGS:一种面向滞后效应的组合模型研究  被引量:1

ISGS:A Combinatorial Model for Hysteresis Effects

在线阅读下载全文

作  者:冯婷婷 彭岩[1] 王洁[1] FENG Ting-ting;PENG Yan;WANG Jie(School of Management,Capital Normal University,Beijing 100056,China)

机构地区:[1]首都师范大学管理学院,北京100056

出  处:《电子学报》2023年第9期2504-2509,共6页Acta Electronica Sinica

基  金:全国教育科学规划-教育部重点课题(No.DLA190426)。

摘  要:针对滞后效应明显、样本量小的数据集,为解决单一算法模型预测精度低、泛化能力差的问题,提出了一种基于等距特征映射算法(Isometric Feature Mapping,ISOMAP)、少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)、遗传算法(Genetic Algorithm,GA)、支持向量回归(Support Vector Regression,SVR)的组合模型ISGS(ISOMPA-SMOTE-GA-SVR).首先,利用ISOMAP和SMOTE算法对滞后效应明显、样本量较小的数据集进行特征变换.其次,利用SVR算法较强的非线性分类能力及泛化能力对数据集进行回归分析.最后,利用GA算法对SVR算法的参数进行优化,以提升模型的预测精度.采用气象因素、空气质量、呼吸系统发病人数三组数据集,基于ISGS模型进行了发病人数预测的仿真实验和对比实验.实验结果表明,该模型预测精度和准确率较传统模型均有所提高,预测精度达到93.65%(传统单一模型83.481%).同时具有更好的泛化能力,能够更好地处理高维度、小样本数据集.In anticipation of data sets with small sample size and evident lag effects,a novel ISGS(ISOMPASMOTE-GA-SVR)model was proposed to address the issues of low prediction accuracy and inadequate generalization in single-algorithm prediction models.This ISGS model integrates isometric feature mapping(ISOMAP),synthetic minority oversampling technique(SMOTE),genetic algorithm(GA),and support vector regression(SVR),thereby providing a comprehensive solution.Firstly,ISOMAP and SMOTE were employed to perform feature transformation on data sets characterized by small sample size and evident lag.Secondly,the SVR algorithm was adopted due to its robust ability to generalize and classify non-linearly in regression analysis of the data set.Lastly,GA was utilized to optimize the parameters of SVR,thereby enhancing the prediction accuracy of the model.Three data sets comprised of meteorological factors,air quality and the number of patients with respiratory diseases was utilized to conduct simulation and comparative experiments using the ISGS model.The experimental results demonstrate that the proposed ISGS model achieves a prediction accuracy of 93.65%,surpassing that of all other reference models.Furthermore,the model exhibits superior generalization capabilities and can effectively handle data sets with higher dimension and smaller sample size.

关 键 词:等距特征映射算法 少数类过采样技术 遗传算法 支持向量回归 组合模型 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象