检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾树华 黄银秀[3] 黄昌兵[1,2] ZENG Shuhua;HUANG Yinxiu;HUANG Changbing(Hunan High Speed Railway Operation Safety Assurance Engineering Technology Research Center,Zhuzhou 412006,China;Hunan Vocational College of Railway Technology,Zhuzhou 412006,China;Hunan Chemical Vocational Technology College,Zhuzhou 412006,China)
机构地区:[1]湖南省高铁运行安全保障工程技术研究中心,湖南株洲412006 [2]湖南铁路科技职业技术学院,湖南株洲412006 [3]湖南化工职业技术学院,湖南株洲412006
出 处:《现代信息科技》2023年第19期134-137,共4页Modern Information Technology
基 金:湖南省自然科学基金(2020JJ7054)。
摘 要:为解决钢轨表面伤损检测问题,提出一种少样本条件下的钢轨表面伤损检测方法。首先,设计样本随机组合策略,扩充钢轨表面伤损数据集规模;其次,引入迁移学习方法,在公开大规模数据集上进行迁移学习训练,以获得迁移学习能力,降低对钢轨表面伤损样本的需求数量;最后,加入通道自注意力机制,提高模型的训练速度。实验证明,该方法可有效提高钢轨表面伤损的识别精度。To solve the problem of rail surface damage detection,a rail surface damage detection method with few samples is proposed.Firstly,design a sample random combination strategy to expand the scale of the rail surface damage dataset;secondly,introduce transfer learning methods and conduct transfer learning training on publicly available large-scale datasets to obtain transfer learning capabilities and reduce the demand amount for rail surface damage samples;finally,a channel self attention mechanism is added to improve the training speed of the model.Experiments have shown that this method can effectively improve the recognition accuracy of rail surface damage.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.188.252