检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵二峰[1,2,3] 李章寅 袁冬阳 ZHAO Erfeng;LI Zhangyin;YUAN Dongyang(The National key laboratory of Water Disaster prevention,Hohai University,Nanjing 210098,China;College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China;National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety,Hohai University,Nanjing 210098,China)
机构地区:[1]河海大学水灾害防御全国重点实验室,江苏南京210098 [2]河海大学水利水电学院,江苏南京210098 [3]河海大学水资源高效利用与工程安全国家工程研究中心,江苏南京210098
出 处:《河海大学学报(自然科学版)》2023年第6期44-52,共9页Journal of Hohai University(Natural Sciences)
基 金:国家自然科学基金项目(52079046,U2243223)。
摘 要:为提升大坝结构变形预测精度,采用完全自适应噪声集合经验模态分解(CEEMDAN)法将变形实测序列解耦为一系列具有不同时频特征的本征模态函数,使用小波阈值消噪对高频分量平稳化处理后进行重构,利用基于双阶段注意力机制的长短期记忆网络(DA-LSTM)模型对重构变形序列进行预测。实例验证结果表明,联合CEEMDAN算法和小波阈值消噪方法能够有效识别并清洗实测数据中的异常值,提升了测值对大坝运行性态的表征能力,同时DA-LSTM模型可以充分挖掘大坝变形的滞后性和增强网络的可解释性,据此构建的变形预测模型具有优良的稳健性。To improve the prediction accuracy on the deformation of dam structure,the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)algorithm was adopted in this work to decouple the measured sequence into a series of intrinsic mode functions with different time-frequency characteristics,and then the wavelet threshold denoising was used to stabilize the high frequency component for the reconstruction.Afterwards,a dual-stage attention-based long short-term memory network(DA-LSTM)model was introduced to predict the reconstructed deformation sequence.The results show that the denoising processing method combining CEEMDAN algorithm and wavelet threshold denoising can effectively identify and deal with the outliers in the measured data to improve the representation capacity on the dam performance.Moreover,the established model can exploit the hysteresis of dam deformation and enhance the interpretability of the DA-LSTM network,indicating the strong robustness.
关 键 词:大坝变形 深度学习 消噪 注意力机制 长短期记忆网络 预测
分 类 号:TV698.11[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.255.50