基于疯狂捕猎秃鹰算法的K均值互补迭代聚类优化  被引量:1

K-means complementary iterative clustering optimization based on crazy-hunting bald eagle search algorithm

在线阅读下载全文

作  者:黄鹤[1,2] 温夏露 杨澜 王会峰 高涛[1] 茹锋 HUANG He;WEN Xia-lu;YANG Lan;WANG Hui-feng;GAO Tao;RU Feng(School of Electronic and Control Engineering,Chang’an University,Xi’an 710064,China;Xi’an Key Laboratory of Intelligent Expressway Information Fusion and Control,Xi’an 710064,China)

机构地区:[1]长安大学电子与控制工程学院,陕西西安710064 [2]西安市智慧高速公路信息融合与控制重点实验室,陕西西安710064

出  处:《浙江大学学报(工学版)》2023年第11期2147-2159,共13页Journal of Zhejiang University:Engineering Science

基  金:国家重点研发计划资助项目(2021YFB2501200);国家自然科学基金资助项目(52172324,52172379);陕西省重点研发计划资助项目(2021SF-483);陕西省博士后科研资助项目(2018BSHYDZZ64);西安市智慧高速公路信息融合与控制重点实验室(长安大学)开放基金资助项目(300102323502);中央高校基本科研业务费资助项目(300102323501).

摘  要:在处理庞大复杂的点云数据时,传统聚类方法精度低、耗时长并且受离群点影响大,针对以上问题,提出基于疯狂捕猎的柯西反向秃鹰搜索算法(QO-BESCH)的K均值互补迭代聚类优化方法.所提算法构建基于体元包围盒的初始聚类中心选择模型,提升初始化聚类中心质量;提出疯狂捕猎机制,同时融合动态自适应控制算子和柯西反向策略,提升秃鹰搜索算法(BES)的寻优能力,增加寻找聚类中心的成功率;利用QO-BESCH优化K均值聚类(KMC),在减小迭代次数的同时增加搜索效率,得到较好的聚类结果.利用UCI标准数据集对所提算法进行测试,并与8种聚类算法进行对比,实验结果证明了所提算法的优越性.将本研究算法结合PCL点云库应用于ModelNet40点云数据集聚类,结果表明,所提算法可以实现有效聚类,适用性较强.A K-means complementary iterative clustering method optimized by quasi-oppositional bald eagle search base on crazy-hunting(QO-BESCH)was proposed,in order to solve the problems of low precision,long time and large influence of outliers in the process of processing large and complex point cloud data by traditional clustering methods.Firstly,the initial clustering center selection model based on volume cell bounding box was constructed to improve the quality of initial clustering center.Secondly,a crazy hunting mechanism was proposed,which combined dynamic adaptive control operators and quasi-oppositional strategy,significantly improved the searching ability of bald eagle search(BES)algorithm,and increased the success rate of searching clustering center.Finally,the Kmeans clustering(KMC)was optimized by using QO-BESCH to reduce the number of iterations and increase the search efficiency,and better clustering results were obtained.The proposed algorithm was tested by using UCI standard data set and compared with eight clustering algorithms.The experimental results show the effectiveness and superiority of the proposed algorithm.Further,the proposed algorithm was applied in combination with PCL point cloud library to cluster ModelNet40 point cloud dataset.Results show that the proposed algorithm can realize effective clustering and has strong applicability.

关 键 词:K均值聚类(KMC) 体元密度 秃鹰搜索(BES)算法 点云聚类 部件分割 

分 类 号:U666.1[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象