检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周晓娟[1] ZHOU Xiaojuan(Henan Institute of Economics and Trade,Zhengzhou Henan 450000,China)
出 处:《信息与电脑》2023年第17期186-188,共3页Information & Computer
摘 要:传统大数据群体计算任务分配方法以任务分配的增益为主,在任务添加、分配冲突、二次分配的阶段增加了多次计算,影响任务分配效率。针对此问题,设计基于可控关联性网络的大数据群体计算任务分配方法。首先,确认可控关联性网络大数据群体分配权限,获取自适应分割子任务,建立子任务之间的关联度,使任务能够分配到关联度更高的用户。其次,建立大数据群体计算任务的合理分配机制,将发布方提交的任务进行预处理,接收方根据任务关联度进行任务分配。最后,进行实验分析。实验结果表明,该方法的分配效果更佳,优于对照组。The traditional big data group computing task allocation method mainly focuses on the gain of task allocation,adding multiple calculations during the stages of task addition,allocation conflicts,and secondary allocation,which affects the efficiency of task allocation.To address this issue,a task allocation method for big data group computing based on controllable correlation networks is designed.Firstly,confirm the controllable relevance of network big data group allocation permissions,obtain adaptive segmentation subtasks,establish the correlation between subtasks,and enable tasks to be assigned to users with higher correlation.Secondly,establish a reasonable allocation mechanism for big data group computing tasks,preprocess the tasks submitted by the publisher,and assign tasks to the recipient based on task correlation.Finally,conduct experimental analysis.The experimental results show that the allocation effect of this method is better than that of the control group.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28