机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116 [2]矿山数字化教育部工程研究中心(中国矿业大学),江苏徐州221116 [3]天津大学智能与计算学部,天津300350
出 处:《计算机学报》2023年第11期2476-2487,共12页Chinese Journal of Computers
基 金:国家自然科学基金(62276265,61976216,62206297,61672522)资助。
摘 要:深度随机配置网络(Deep Stochastic Configuration Network,DSCN)是一种增量式随机化学习模型,具有人为干预程度低、学习效率高和泛化能力强等优点.但是,面向噪声数据回归与分析时,传统的DSCN易受到异常值影响,从而降低了模型的泛化性.因此,为提高噪声数据回归的精度和鲁棒性,提出了基于M-estimator函数的加权深度随机配置网络(Weighted Deep Stochastic Configuration Networks,WDSCN).首先,选取Huber和Bisquare 2个常用的M-estimator函数计算样本权重,利用加权最小二乘法和L2正则化策略替代最小二乘来更新WDSCN输出权重,以降低异常值对WDSCN的负面影响;其次,为提高WDSCN模型表征能力,设计了一种随机配置稀疏自编码器(Stochastic Configuration Sparse Autoencoder,SC-SAE),SC-SAE基于DSCN其独有的监督机制随机分配输入参数,采用基于L1正则化的目标函数,并利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)计算SC-SAE输出权重;然后,为获取有效的特征表示,利用SC-SAE生成特征的随机性和多样性,采用多个SC-SAE进行特征学习并融合,用于WDSCN模型训练;最后,在真实数据集上的实验结果表明,WDSCN-Huber、WDSCN-Bisquare相比于DSCN、SCN以及RSC-KDE、RSC-Huber、RSC-IQR、RSCN-KDE、WBLS-KDE和RBLS-Huber等加权模型具有更高的泛化性能和回归精度.Deep stochastic configuration network(DSCN)is an randomized incremental learning model,it can start from a small structure,increase the nodes and hidden layers gradually.As the input weights and biases of nodes are assigned according to supervisory mechanism,meantime,all the nodes in hidden layer are fully connected to the outputs,the output weights of DSCN are determined through the least square method.Therefore,DSCN has the advantages of less manual intervention,high learning efficiency,strong generalization ability.However,although the randomized feedforward learning process of DSCN has faster efficiency,the feature learning ability is still insufficient.In the meantime,with the increase of nodes and hidden layers,it is easy to lead to overfitting phenomenon.When solving regression problems with noise,the performance of original DSCN is easily affected by outliers,which reduces the generalization ability of the model.Therefore,to improve the regression performance and robustness of DSCN,weighted deep sto-chastic configuration networks(WDSCN)based on M-Estimator functions are proposed.First of all,we adopt two common M-estimator functions(i.e.,Huber and Bisquare)to acquire the sample weights for re-ducing the negative impact of outliers.When the sample has a smaller training error,give this sample a lar-ger weight,while when the training error of sample is larger,it is determined to be outlier data and give this sample a smaller weight.The sample weight decreases monotonically with the increase of the absolute value of the error,thus reducing the influence of noisy data onto the model and improving the generaliza-tion of the algorithm.Meanwhile,the weighted least square method and L2 regularization strategy are in-troduced to calculate output weight vector replace the least square method.It can not only solve the noisy data regression problems and avoid over-fitting problem of DSCN.In the second place,the model based on L1 regularization is helpful to extract sparse features and improve the accuracy of supervis
关 键 词:深度随机配置网络 异常数据 鲁棒性 回归 随机神经网络
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...