机构地区:[1]中山大学环境科学与工程学院,广东省环境污染控制与修复技术重点实验室,广东广州510006
出 处:《Chinese Journal of Catalysis》2023年第10期109-122,共14页催化学报(英文)
基 金:国家自然科学基金(51872341);广东省“特支计划”科技创新青年拔尖人才项目(2019TQ05L196).
摘 要:碳中和是实现绿色可持续发展重要途径之一,以半导体光催化CO_(2)还原.反应(CO_(2)RR)为核心的人工光合成技术极具发展前景.石墨相氮化碳(g-C_(3)N_(4))作为一种二维层状光催化剂,化学性质稳定,且满足CO_(2)RR的热力学要求,但传统的g-C_(3)N_(4)光催化活性和选择性较低,这主要归因于高的电荷复合几率和低的光电子利用效率.采用二维碳化钛(Ti_(3)C_(2)Tx)等碳基助催化剂作为电子受体,促进光生载流子的快速分离与转移,成为提高g-C_(3)N_(4)光催化CO_(2)RR效率的有效手段.然而,g-C_(3)N_(4)光催化剂与Ti_(3)C_(2)Tx助催化剂多数以2D/2D构型界面耦合,受限于二者界面弱的范德华相互作用、高的界面静电势垒和缓慢的界面电荷转移速率,2D/2D g-C_(3)N_(4)/Ti_(3)C_(2)Tx肖特基结光催化CO_(2)RR活性与选择性仍普遍欠佳.针对该问题,本文采用熔盐法制备了沿c轴方向生长的1D高结晶g-C_(3)N_(4)纳米棒(CCN),并通过冷冻干燥辅助界面耦合的方法将其组装到2D Ti_(3)C_(2)Tx基底上,在冷冻干燥条件下,CCN边缘的NHx与MXene表面-O/-OH基团会形成更强的界面氢键耦合作用,最终构筑具有独特界面氢键作用的1D/2D肖特基结光催化剂(记作1D/2D TC/CCN-FD).扫描电镜和透射电镜结果证明了复合材料的成功制备.X射线光电子能谱和密度泛函理论(DFT)计算结果证明了界面电荷的定向转移.瞬态光电流、Nyquist曲线、荧光光谱和DFT计算结果表明,由于g-C_(3)N_(4)纳米棒光催化剂沿π共轭平面的电荷传输势垒远低于以范德华相互连接的g-C_(3)N_(4)层间的电荷传输势垒,1D/2D构型界面耦合可以降低界面电荷转移能垒,加快界面电荷转移速率.气相色谱结果表明,优化组成结构得到的1D/2D TC/CCN-FD复合光催化剂表现出较好的光催化CO_(2)还原效率(2.13μmol^(-1)h^(-1)),分别是1D CCN和2D传统氮化碳的5.6和8.9倍.同时,2D Ti_(3)C_(2)Tx助催化剂上富集的更高密度�Two-dimensional(2D)layered photocatalysts coupled with 2D Ti_(3)C_(2)T_(x)(T=OH,O,or F)MXene cocatalysts in 2D/2D configuration have been extensively studied for use in artificial photosynthesis.Unfortunately,the overall photoreaction efficiency of these cocatalysts is often limited by weak 2D/2D interfacial van der Waals interactions,high interfacial electrostatic barriers,and slow interfacial charge transfer.In this study,1D crystalline g-C_(3)N_(4)(CCN)nanorods are grown along the c-axis using the molten-salt method and assembled onto a 2D Ti_(3)C_(2)T_(x)substrate by freeze-drying-assisted interfacial coupling,forming a unique Schottky junction photocatalyst in a 1D/2D configuration with interfacial hydrogen bonds.Transfer of photoelectrons in the CCN nanorods could along the radialπ-conjugated plane to the hydrogen-bonded 2D Ti_(3)C_(2)T_(x)in the 1D/2D configuration is more efficient than the slow interlayer charge transfer in catalysts with a conventional 2D/2D configuration.Consequently,the optimized 1D-CCN/2D-Ti_(3)C_(2)T_(x)hybrid photocatalyst assembled by freeze-drying(TC/CCN-FD)exhibited an outstanding photocatalytic CO_(2) reduction activity at a rate of 2.13μmol g^(–1)h^(–1),being 5.6 and 8.9 times more efficient than the pristine 1D CCN and 2D bulk g-C_(3)N_(4) counterparts,respectively.Moreover,the selectivity towards the multielectron reduction product(CH_(4))was significantly enhanced over TC/CCN-FD owing to the faster interfacial charge transfer across the CCN/Ti_(3)C_(2)T_(x)interface and the higher density of photoelectrons on the Ti_(3)C_(2)T_(x)cocatalysts.This work will inspire further studies on suppressing the interfacial charge transfer barrier by matching the interfacial crystal orientation and strengthening the interfacial interactions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...