高晶化g-C_(3)N_(4)光催化剂:合成、结构调控和光催化产氢  被引量:1

High‐crystalline g‐C_(3)N_(4) photocatalysts:Synthesis,structure modulation,and H_(2)‐evolution application

在线阅读下载全文

作  者:赵彬彬 钟威[1] 陈峰[1] 王苹[1] 别传彪 余火根[1,2] Binbin Zhao;Wei Zhong;Feng Chen;Ping Wang;Chuanbiao Bie;Huogen Yu(State Key Laboratory of Silicate Materials for Architectures and School of Chemistry,Chemical Engineering and Life Sciences,Wuhan University of Technology,Wuhan 430070,Hubei,China;Laboratory of Solar Fuel,Faculty of Materials Science and Chemistry,China University of Geosciences,Wuhan 430074,Hubei,China)

机构地区:[1]武汉理工大学硅酸盐建筑材料国家重点实验室和化学化工与生命科学学院,湖北武汉430070 [2]中国地质大学材料与化学学院,太阳燃料实验室,湖北武汉430074

出  处:《Chinese Journal of Catalysis》2023年第9期127-143,共17页催化学报(英文)

基  金:国家自然科学基金(U22A20147,22075220);湖北省自然科学基金(2022CFA001).

摘  要:开发清洁和可再生的氢能是解决当前环境污染和能源短缺的有效途径之一.在众多制氢方法中,光催化分解水产氢被认为是最具潜力的方法之一.目前,研究者已开发了多种光催化材料,其中,石墨相氮化碳(g-C_(3)N_(4))具有低成本、无毒、能带结构合适和理化性质优异等优点,在光催化产氢领域被广泛报道.然而,高温煅烧各种有机物前驱体制备的传统g-C_(3)N_(4)材料往往表现出严重的团聚和低结晶度,并具有大量的内部和表面缺陷,造成光生载流子的快速复合,导致光催化性能低.为了增强g-C_(3)N_(4)材料的光催化活性,制备具有高比表面积的g-C_(3)N_(4)纳米片被认为是有效的方法之一,如比较常用的方法有二次煅烧法和超声剥离法等.然而,由于g-C_(3)N_(4)纳米片是从传统g-C_(3)N_(4)光催化材料中剥离或脱层制备,因而仍然表现出低的结晶度,不利于光生电荷的有效分离和快速迁移,光催化活性的提高有限.相比于低结晶度的g-C_(3)N_(4),构建高晶化g-C_(3)N_(4)光催化剂可以有效减少其内部和表面缺陷,进而促进光生载流子的有效分离和快速传输,最终显著提升g-C_(3)N_(4)材料的光催化性能.本文综述了高晶化g-C_(3)N_(4)光催化剂的最新研究进展,重点分析和总结了高晶化g-C_(3)N_(4)光催化材料的微结构特征、合成方法、改性策略和在光催化产氢领域中的应用.首先,通过与传统高温煅烧法制备的g-C_(3)N_(4)光催化材料比较,深入介绍了高晶化g-C_(3)N_(4)光催化剂的微结构特征(低缺陷和高度有序排列)和高晶化特性的典型表征手段(TEM和XRD),并且详细分析了高晶化g-C_(3)N_(4)光催化剂的微结构对光催化反应过程的促进作用机制,即g-C_(3)N_(4)光催化材料的高度有序结构可减少其内部和表面缺陷,有效抑制光生电子和空穴的快速复合,实现高效传输与分离.其次,详细总结了高晶化g-C_(3)N_(4)光催化剂的合成Graphitic carbon nitride (g-C_(3)N_(4)) has received extensive attention in the photocatalytic field becauseof its low cost, nontoxicity, suitable bandgap structure, and high physicochemical stabilityamong diverse photocatalysts. However, traditional g-C_(3)N_(4) materials prepared by thehigh-temperature calcination of various organic precursors generally exhibit poor crystallinity andpossess numerous internal and surface defects, leading to the rapid recombination of photo-excitedcharges. Constructing a highly crystalline g-C_(3)N_(4) photocatalyst, as opposed to the traditional poorlycrystalline g-C_(3)N_(4), effectively reduces internal and surface defects, facilitating efficient separationand rapid transfer of photoexcited charges. As a result, the photocatalytic performance is significantlyenhanced. In this review, recent progress in highly crystalline g-C_(3)N_(4) photocatalysts is summarized.The microstructural characteristics of highly crystalline g-C_(3)N_(4) photocatalysts are discussedin detail. Synthetic methods for highly crystalline g-C_(3)N_(4), such as the salt-assisted (multicomponentsalt and single-component salt), template, two-step calcination method, microwave-assisted method, and others, are meticulously presented. Additionally, various modificationstrategies for highly crystalline g-C_(3)N_(4), encompassing bandgap engineering, heterojunction construction,and co-catalyst modification, are presented. Subsequently, a detailed description of thephotocatalytic H_(2)-evolution applications of highly crystalline g-C_(3)N_(4) materials is given. Lastly, thepaper concludes with a discussion on the outlook for highly crystalline g-C_(3)N_(4) photocatalysts, aimingto offer novel insights into the design of highly efficient crystalline g-C_(3)N_(4) photocatalysts.

关 键 词:光催化 高晶化g-C_(3)N_(4) 合成 改性 产氢 

分 类 号:O64[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象