Deep learning for land use and land cover classification from the Ecuadorian Paramo.  被引量:2

在线阅读下载全文

作  者:Marco Castelo-Cabay Jose A.Piedra-Fernandez Rosa Ayala 

机构地区:[1]Applied Computing Group,University of Almeria,Almeria,Spain

出  处:《International Journal of Digital Earth》2022年第1期1001-1017,共17页国际数字地球学报(英文)

基  金:funded by the EU ERDF and the Spanish Ministry of Economy and Competitiveness(MINECO)under AEI Project TIN2017-83964-R;the Directorate-General for Research and Knowledge Transfer-Junta de Andalucia under Project UrbanITA P2000809.

摘  要:The paramo,plays an important role in our ecosystems as They balance the water resources and can retain substantial quantities of carbon.This research was carried out in the province of Tungurahua,specifically the Quero district.The aim is to develop a classification of the land use land cover(LULC)in the paramo using satellite imagery using several classifiers and determine which one obtains the best performance,for which three different approaches were applied:Pixel-Based Image Analysis(PBIA),Geographic Object-Based Image Analysis(GEOBIA),and a Deep Neural Network(DNN).Various parameters were used,such as the Normalized Difference Vegetation Index(NDVI),the Bare Soil Index(BSI),texture,altitude,and slope.Seven classes were used:paramo,pasture,crops,herbaceous vegetation,urban,shrubrainland,and forestry plantations.The data was obtained with the help of onsite technical experts,using geo-referencing and reference maps.Among the models used the highest-ranked was DNN with an overall precision of 87.43%,while for the paramo class specifically,GEOBIA reached a precision of 95%.

关 键 词:CLASSIFICATION land use and land cover pixel-based image analysis geographic object-based image analysis deep neural network 

分 类 号:P96[天文地球—自然地理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象