Satellite and instrument entity recognition using a pre-trained language model with distant supervision  

在线阅读下载全文

作  者:Ming Lin Meng Jin Yufu Liu Yuqi Bai 

机构地区:[1]Department of Earth System Science,Institute for Global Change Studies,Ministry of Education Ecological Field Station for East Asian Migratory Birds,Tsinghua University,Beijing,People’s Republic of China

出  处:《International Journal of Digital Earth》2022年第1期1290-1304,共15页国际数字地球学报(英文)

基  金:supported by the National Key Research and Development Program of China:[grant number 2019YFE0126400].

摘  要:Earth observations,especially satellite data,have produced a wealth of methods and results in meeting global challenges,often presented in unstructured texts such as papers or reports.Accurate extraction of satellite and instrument entities from these unstructured texts can help to link and reuse Earth observation resources.The direct use of an existing dictionary to extract satellite and instrument entities suffers from the problem of poor matching,which leads to low recall.In this study,we present a named entity recognition model to automatically extract satellite and instrument entities from unstructured texts.Due to the lack of manually labeled data,we apply distant supervision to automatically generate labeled training data.Accordingly,we fine-tune the pre-trained language model with early stopping and a weighted cross-entropy loss function.We propose the dictionary-based self-training method to correct the incomplete annotations caused by the distant supervision method.Experiments demonstrate that our method achieves significant improvements in both precision and recall compared to dictionary matching or standard adaptation of pre-trained language models.

关 键 词:Earth observation named entity recognition pre-trained language model distant supervision dictionary-based self-training 

分 类 号:P3[天文地球—地球物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象