检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Manuel Ignacio Perez Bruno Karelovic Roberto Molina Rodrigo Saavedra Pierluigi Cerulo Guillermo Cabrera
机构地区:[1]Department of Computer Sciences,Universidad de Concepcion Biblioteca Central,Concepcion,Chile [2]Celulosa Arauco y Constitucion SA,I&D,Santiago,Chile
出 处:《International Journal of Digital Earth》2022年第1期2223-2238,共16页国际数字地球学报(英文)
摘 要:The monitoring of trees is crucial for the management of large areas of forest cultivations,but this process may be costly.However,remotely sensed data offers a solution to automate this process.In this work,we used two neural network methods named You Only Look Once(YOLO)and Mask R-CNN to overcome the challenging tasks of counting,detecting,and segmenting high dimensional Red–Green–Blue(RGB)images taken from unmanned aerial vehicles(UAVs).We present a processing framework,which is suitable to generate accurate predictions for the aforementioned tasks using a reasonable amount of labeled data.We compared our method using forest stands of different ages and densities.For counting,YOLO overestimates 8.5%of the detected trees on average,whereas Mask R-CNN overestimates a 4.7%of the trees.For the detection task,YOLO obtains a precision of 0.72 and a recall of 0.68 on average,while Mask R-CNN obtains a precision of 0.82 and a recall of 0.80.In segmentation,YOLO overestimates a 13.5%of the predicted area on average,whereas Mask R-CNN overestimates a 9.2%.The proposed methods present a cost-effective solution for forest monitoring using RGB images and have been successfully used to monitor∼146,500 acres of pine cultivations.
关 键 词:Artificial intelligence tree identification FORESTRY remote sensing
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.131.131