A Privacy-Preserving Federated Learning Algorithm for Intelligent Inspection in Pumped Storage Power Station  

在线阅读下载全文

作  者:Yue Zong Yuanlin Luo YuechaoWu Wenjian Hu Hui Luo Yao Yu 

机构地区:[1]Power China Huadong Engineering Corporation Limited,Hangzhou,Zhejiang 311122,China [2]School of Computer Science and Engineering,Northeastern University,Shenyang,Liaoning 110819,China

出  处:《China Communications》2023年第12期182-195,共14页中国通信(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant 62171113。

摘  要:As a distributed machine learning architecture,Federated Learning(FL)can train a global model by exchanging users’model parameters without their local data.However,with the evolution of eavesdropping techniques,attackers can infer information related to users’local data with the intercepted model parameters,resulting in privacy leakage and hindering the application of FL in smart factories.To meet the privacy protection needs of the intelligent inspection task in pumped storage power stations,in this paper we propose a novel privacy-preserving FL algorithm based on multi-key Fully Homomorphic Encryption(FHE),called MFHE-PPFL.Specifically,to reduce communication costs caused by deploying the FHE algorithm,we propose a self-adaptive threshold-based model parameter compression(SATMPC)method.It can reduce the amount of encrypted data with an adaptive thresholds-enabled user selection mechanism that only enables eligible devices to communicate with the FL server.Moreover,to protect model parameter privacy during transmission,we develop a secret sharing-based multi-key RNS-CKKS(SSMR)method that encrypts the device’s uploaded parameter increments and supports decryption in device dropout scenarios.Security analyses and simulation results show that our algorithm can prevent four typical threat models and outperforms the state-of-the-art in communication costs with guaranteed accuracy.

关 键 词:federated learning(FL) fully homomorphic encryption(FHE) intelligent inspection multikey RNS-CKKS parameter compression 

分 类 号:P20[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象