检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑子强 何得淮 廖潇楠 兰琳 蒋静文 张伟[1] ZHENG Zi-Qiang;HE De-Huai;LIAO Xiao-Nan;LAN Lin;JIANG Jing-Wen;ZHANG Wei(West China Biomedical Big Data Center,West China Hospital,Sichuan University,Chengdu 610044,China;Education and Correction Department,Sichuan Provincial Administration of Prisons,Chengdu 610016,China)
机构地区:[1]四川大学华西医院生物医学大数据中心,成都610044 [2]四川省监狱管理局教育改造处,成都610016
出 处:《四川大学学报(自然科学版)》2023年第6期138-144,共7页Journal of Sichuan University(Natural Science Edition)
基 金:罪犯综合评估系统研发项目(HX20220768);四川省科技计划(2020YFS0575)。
摘 要:现较为主流的罪犯自我伤害风险评估主要通过量表实现,但存在耗时长、虚报率高的问题,缺乏客观有效的识别方法.音频数据不受个体语言限制,有采集方便、信息丰富等特征,目前基于音频数据构建的自我伤害风险识别模型取得了不错的效果.通过访谈获取罪犯音频数据,对音频进行预处理后提取音频关键特征,采用4种机器学习算法构建分类模型.实验结果表明,罪犯音频能有效区分罪犯是否具有自我伤害、自杀倾向,平均F1分数为86.88%.The mainstream suicide risk assessment of criminals is achieved through scales,but there are some problems such as long time consuming,high false reporting rate and lack of objective and effective identification.Since audio data is convenient and informative while not restricted by individual language,previous studies have achieved good results in audio-based modeling of criminal suicide.In this study,the audio data of criminals were obtained through interviews.After pre-processing,the key audio features were extracted for machine learning modeling,and four classifiers were used to build the classification model.The experimental results show that the audio of criminals can effectively distinguish whether criminals have suicidal tendencies with the average F1 score of 86.88%.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP391[自动化与计算机技术—控制科学与工程] D917[政治法律—法学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38