检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李艺 刘成栋[1] 刘检生 沈光泽 LI Yi;LIU Cheng-dong;LIU Jian-sheng;SHEN Guang-ze(Nanjing Hydraulic Research Institute,Nanjing 210029,China;Yuyao Reservoir Management Service Center,Yuyao 315400,China)
机构地区:[1]南京水利科学研究院,江苏南京210029 [2]余姚市水库管理服务中心,浙江余姚315400
出 处:《水电能源科学》2023年第12期93-96,共4页Water Resources and Power
基 金:国家重点研发计划(2022YFC3005405);国家自然科学基金项目(51979176);云南省重点研发计划项目(202203AA080009);宁波市水利科技项目(NSKA202232)。
摘 要:常规大坝位移监测方法中,人工监测方法通常误差大、效率低且不能实时连续监测,而自动化监测方法如全站仪机器人和GNSS面临受天气影响大和垂直位移精度低等问题,故提出一种基于机器视觉的新型大坝位移智能监测方法。该方法采用物联网及智能灾变识别算法将图片数据转化为变形数据,实现对大坝的超高精度非接触式实时测量。以梁辉水库为例,应用研究表明该监测系统运行稳定,水平和垂直方向的监测精度均为1.5 mm,可在其他水利工程表面位移监测中推广应用。Conventional dam displacement monitoring methods are often associated with large errors and low efficiency.Manual monitoring methods cannot provide continuous real-time monitoring,while automated monitoring methods,such as total station robot and GNSS,are affected by weather and have limited accuracy for vertical displacement.To overcome these shortcomings,this study proposes a new intelligent monitoring method for dam displacement based on machine vision.The method utilizes the internet of things and intelligent disaster recognition algorithm to convert picture data into deformation data,enabling ultra-high precision non-contact real-time measurement of the dam.The monitoring system was tested at Lianghui Reservoir,the results demonstrate that the operation of monitoring system is stable,and the horizontal and vertical monitoring accuracy are both 1.5 mm.The proposed method has the potential to be widely applied in other water conservancy projects for surface displacement monitoring.
分 类 号:TV621[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117