基于机器视觉的大坝表面位移智能监测方法研究  被引量:2

Dam Surface Displacement Monitoring System Based on Machine Vision

在线阅读下载全文

作  者:李艺 刘成栋[1] 刘检生 沈光泽 LI Yi;LIU Cheng-dong;LIU Jian-sheng;SHEN Guang-ze(Nanjing Hydraulic Research Institute,Nanjing 210029,China;Yuyao Reservoir Management Service Center,Yuyao 315400,China)

机构地区:[1]南京水利科学研究院,江苏南京210029 [2]余姚市水库管理服务中心,浙江余姚315400

出  处:《水电能源科学》2023年第12期93-96,共4页Water Resources and Power

基  金:国家重点研发计划(2022YFC3005405);国家自然科学基金项目(51979176);云南省重点研发计划项目(202203AA080009);宁波市水利科技项目(NSKA202232)。

摘  要:常规大坝位移监测方法中,人工监测方法通常误差大、效率低且不能实时连续监测,而自动化监测方法如全站仪机器人和GNSS面临受天气影响大和垂直位移精度低等问题,故提出一种基于机器视觉的新型大坝位移智能监测方法。该方法采用物联网及智能灾变识别算法将图片数据转化为变形数据,实现对大坝的超高精度非接触式实时测量。以梁辉水库为例,应用研究表明该监测系统运行稳定,水平和垂直方向的监测精度均为1.5 mm,可在其他水利工程表面位移监测中推广应用。Conventional dam displacement monitoring methods are often associated with large errors and low efficiency.Manual monitoring methods cannot provide continuous real-time monitoring,while automated monitoring methods,such as total station robot and GNSS,are affected by weather and have limited accuracy for vertical displacement.To overcome these shortcomings,this study proposes a new intelligent monitoring method for dam displacement based on machine vision.The method utilizes the internet of things and intelligent disaster recognition algorithm to convert picture data into deformation data,enabling ultra-high precision non-contact real-time measurement of the dam.The monitoring system was tested at Lianghui Reservoir,the results demonstrate that the operation of monitoring system is stable,and the horizontal and vertical monitoring accuracy are both 1.5 mm.The proposed method has the potential to be widely applied in other water conservancy projects for surface displacement monitoring.

关 键 词:大坝表面位移 自动化监测 机器视觉 梁辉水库 

分 类 号:TV621[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象