检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Abbas Yazdinejad Behrouz Zolfaghari Ali Dehghantanha Hadis Karimipour Gautam Srivastava Reza M.Parizi
机构地区:[1]Cyber Science Lab,School of Computer Science,University of Guelph,Ontario,Canada [2]Department of Electrical and Software Engineering,University of Calgary,Alberta,Canada [3]Department of Mathematics and Computer Science,Brandon University,Brandon,Canada [4]College of Computing and Software Engineering,Kennesaw State University,GA,USA [5]Research Center for Interneural Computing,China Medical University,Taichung,Taiwan,China [6]Department of Computer Science and Mathematics,Lebanese American University,Beirut,1102,Lebanon
出 处:《Digital Communications and Networks》2023年第5期1123-1130,共8页数字通信与网络(英文版)
摘 要:Industrial Internet of Things(IIoT)systems depend on a growing number of edge devices such as sensors,controllers,and robots for data collection,transmission,storage,and processing.Any kind of malicious or abnormal function by each of these devices can jeopardize the security of the entire IIoT.Moreover,they can allow malicious software installed on end nodes to penetrate the network.This paper presents a parallel ensemble model for threat hunting based on anomalies in the behavior of IIoT edge devices.The proposed model is flexible enough to use several state-of-the-art classifiers as the basic learner and efficiently classifies multi-class anomalies using the Multi-class AdaBoost and majority voting.Experimental evaluations using a dataset consisting of multi-source normal records and multi-class anomalies demonstrate that our model outperforms existing approaches in terms of accuracy,F1 score,recall,and precision.
关 键 词:IIoT Threat hunting Edge devices Multi-class anomalies Ensemble methods
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38