检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shan Cheng Zihao Yu Ye Liu Xianwang Zuo
出 处:《Protection and Control of Modern Power Systems》2022年第1期586-601,共16页现代电力系统保护与控制(英文)
基 金:funded by the National Natural Science Foundation of China under Grant No.51607105.
摘 要:In order to accurately evaluate power system stability in a timely manner after faults,and further improve the feature extraction ability of the model,this paper presents an improved transient stability assessment(TSA)method of CNN+GRU.This comprises a convolutional neural network(CNN)and gated recurrent unit(GRU).CNN has the feature extraction capability for a micro short-term time sequence,while GRU can extract characteristics contained in a macro long-term time sequence.The two are integrated to comprehensively extract the high-order features that are contained in a transient process.To overcome the difficulty of sample misclassification,a multiple parallel(MP)CNN+GRU,with multiple CNN+GRU connected in parallel,is created.Additionally,an improved focal loss(FL)func-tion which can implement self-adaptive adjustment according to the neural network training is introduced to guide model training.Finally,the proposed methods are verified on the IEEE 39 and 145-bus systems.The simulation results indicate that the proposed methods have better TSA performance than other existing methods.
关 键 词:Transient stability assessment MP CNN+GRU Sample misclassification Improved focal loss function
分 类 号:TM712[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248