An Arbitrary Order Reconstructed Discontinuous Approximation to Biharmonic Interface Problem  

在线阅读下载全文

作  者:Yan Chen Ruo Li Qicheng Liu 

机构地区:[1]School of Mathematical Sciences,Peking University,Beijing 100871,China [2]CAPT,LMAM and School of Mathematical Sciences,Peking University,Beijing 100871,China

出  处:《Annals of Applied Mathematics》2023年第2期149-180,共32页应用数学年刊(英文版)

基  金:supported by High-Performance Computing Platform of Peking University;National Science Foundation in China (No.11971041)。

摘  要:We present an arbitrary order discontinuous Galerkin finite element method for solving the biharmonic interface problem on the unfitted mesh.The approximation space is constructed by a patch reconstruction process with at most one degrees of freedom per element.The discrete problem is based on the symmetric interior penalty method and the jump conditions are weakly imposed by the Nitsche's technique.The C^(2)-smooth interface is allowed to intersect elements in a very general fashion and the stability near the interface is naturally ensured by the patch reconstruction.We prove the optimal a priori error estimate under the energy norm and the L^(2) norm.Numerical results are provided to verify the theoretical analysis.

关 键 词:Biharmonic interface problem patch reconstruction discontinuous Galerkin method 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象