Influence of mineral species on oil-soil interfacial interaction in petroleum-contaminated soils  

在线阅读下载全文

作  者:Yang Yang Dandan Liu Xing Liang Xiaobing Li 

机构地区:[1]National Center for Coal Preparation and Purification Engineering Research,China University of Mining and Technology,Xuzhou 221116,China [2]School of Chemical Engineering and Technology,China University of Mining and Technology,Xuzhou 221116,China

出  处:《Chinese Journal of Chemical Engineering》2023年第9期147-156,共10页中国化学工程学报(英文版)

基  金:supported by the National Key Research and Development Program of China(2019YFE0115600);the National Natural Science Foundation of China(52074290)。

摘  要:The mineral species in soils vary in a wide variety of places,thus resulting in the petroleumcontaminated soil(PCS)with complex characters.Thus,the research on the effect of mineral species on oil-soil interactions in PCS takes on a critical significance.In this study,the desorption and adsorption behaviors of aromatic hydrocarbons(Ar)on two minerals surfaces were examined.Meanwhile,the interfacial forces between minerals and Ar were studied and the sources of these forces were analyzed.Moreover,molecular dynamics(MD)simulations were conducted to gain insight into the interfacial interaction mechanisms.As revealed by the results of this study,in comparison with Qs-Ar(quartz sand,Qs),Mnt-Ar(montmorillonite,Mnt)contaminants required higher temperature and activation energies for thermal desorption(201.95 kJ·mol^(-1)vs.127.82 kJ·mol^(-1))The above difference was generated since the adhesive forces between Ar and Mnt surfaces were greater than those between Ar and Qs.As indicated by the analysis of the adhesion force sources,the van der Waals forces were responsible for facilitating oil adhesion to mineral surfaces,even though the electrostatic force prevented oil-mineral adhesion.Furthermore,the hydrophobic forces facilitated adhesion in 3 nm.The MD results demonstrated that compared with the Qs system,there existed larger binding energies between Ar and Mnt,a lower diffusion coefficient for Ar on the Mnt surface,as well as more significant adsorption of Ar on Mnt.In general,the different mineral species affect the strength of the interaction at the oil-soil interface,which is a guideline for proposing targeted oil-soil separation measures.

关 键 词:Oil-soil interface Thermal desorption Isothermal adsorption Extended-DLVO(EDLVO) Molecular dynamics 

分 类 号:O64[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象