A novel adaptive temporal-spatial information fusion model based on Dempster-Shafer evidence theory  

在线阅读下载全文

作  者:胡振涛 SU Yujie ZHANG Zihan HU Zhentao;SU Yujie;ZHANG Zihan(School of Artificial Intelligence,Henan University,Zhengzhou 450046,P.R.China)

机构地区:[1]School of Artificial Intelligence,Henan University,Zhengzhou 450046,P.R.China

出  处:《High Technology Letters》2023年第4期358-364,共7页高技术通讯(英文版)

基  金:the National Natural Science Foundation of China(No.61976080);the Key Project on Research and Practice of Henan University Graduate Education and Teaching Reform(YJSJG2023XJ006);the Key Research and Development Projects of Henan Province(231111212500);the Henan University Graduate Education Innovation and Quality Improvement Program(SYLKC2023016).

摘  要:In the field of target recognition based on the temporal-spatial information fusion,evidence the-ory has received extensive attention.To achieve accurate and efficient target recognition by the evi-dence theory,an adaptive temporal-spatial information fusion model is proposed.Firstly,an adaptive evaluation correction mechanism is constructed by the evidence distance and Deng entropy,which realizes the credibility discrimination and adaptive correction of the spatial evidence.Secondly,the credibility decay operator is introduced to obtain the dynamic credibility of temporal evidence.Finally,the sequential combination of temporal-spatial evidences is achieved by Shafer’s discount criterion and Dempster’s combination rule.The simulation results show that the proposed method not only considers the dynamic and sequential characteristics of the temporal-spatial evidences com-bination,but also has a strong conflict information processing capability,which provides a new refer-ence for the field of temporal-spatial information fusion.

关 键 词:temporal-spatial information fusion evidence theory Deng entropy evidence dis-tance credibility decay model 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象