检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘鹏[1,2] 袁啸林 侯吉磊 万国扬 江明 周阳[1,2] 左桂忠 Liu Peng;Yuan Xiaolin;Hou Jilei;Wan Guoyang;Jiang Ming;Zhou Yang;Zuo Guizhong(Key Laboratory of Advanced Perception and Intelligence Control of High-End Equipment,Anhui Polytechnic University,Wuhu 241000,China;Institute of Plasma Physics,Chinese Academy of Science,Hefei 230031,China)
机构地区:[1]安徽工程大学高端装备先进感知与智能控制教育部重点实验室,芜湖241000 [2]中国科学院等离子体物理研究所,合肥230031
出 处:《电子测量与仪器学报》2023年第8期128-135,共8页Journal of Electronic Measurement and Instrumentation
基 金:国家自然科学基金青年基金(11905254,12105322);安徽省自然科学基金青年基金(2108085QA38)项目资助。
摘 要:在聚变装置真空检漏领域中,未来聚变装置涉氚运行,检漏人员无法进入装置检漏,这使得这项任务极其困难和耗时。为实现聚变装置泄漏设备的快速准确检测,本文以6自由度机械臂为研究对象,提出了一种GV2-YOLOv5的真空设备检测方法用于真空检漏机器人对真空设备进行识别和定位喷氦。在该方法中,结合轻量级Ghost Net V2网络构建C3GhostV2模块,同时使用轻量的Ghost卷积提取目标特征,从而降低模型参数量,提高计算速度;在特征融合网络中添加Bottleneck Transformers和ECA注意力机制,提高网络特征提取能力以及加强模型通道特征。实验结果表明,在自制数据集上,改进后的模型平均精度为93.2%,相比YOLOv5s提高了1.4%,模型参数量减少了29.5%,检测速度为92 fps,满足实时性与准确性的需求,为真空检漏机器人目标识别与定位提供了一种的解决方案。In the field of vacuum leak detection in fusion devices,the future fusion devices are operated with tritium and the leak checkers do not have access to the devices for leak checking,which makes this task extremely difficult and time-consuming.In order to realize the fast and accurate detection of fusion device leakage equipment,and realize the fast and accurate detection of fusion device leakage equipment,this paper takes the six-degree-of-freedom robotic arm as the research object,and proposes a GV2-YOLOv5 vacuum equipment detection method for vacuum leakage detection robots to identify and locate the vacuum equipment for helium injection.In this method,the C3GhostV2 module is constructed by combining lightweight GhostNetV2 network,while using lightweight GhostConv to extract target features,thus reducing the number of model parameters and improving the computational speed.Bottleneck Transformers and ECA Attention mechanism are added to the feature fusion network to improve the network feature extraction capability and to enhance the model channel features.The experimental results show that the average accuracy of the improved model is 93.2% on the homemade dataset,which is 1.4% higher than YOLOv5s,the amount of model parameters is reduced by 29.5%,and the detection speed is 92 fps,which meets the requirements of real-time and accuracy,and provides a solution for the vision localization technology of vacuum leak detection robot.
关 键 词:聚变装置 真空检漏机器人 GhostNetV2 Ghost卷积 注意力机制
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.121.29