检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段一凡 刘小杰 李欣 刘然 李红玮 赵军 DUAN Yifan;LIU Xiaojie;LI Xin;LIU Ran;LI Hongwei;ZHAO Jun(College of Metallurgy and Energy,North China University of Technology,Tangshan 063210,Hebei,China;Tangshan Branch,HBIS Group Co.,Ltd.,Tangshan 063020,Hebei,China)
机构地区:[1]华北理工大学冶金与能源学院,河北唐山063210 [2]河钢集团有限公司唐山分公司,河北唐山063020
出 处:《中国冶金》2023年第11期114-126,137,共14页China Metallurgy
基 金:国家自然科学基金青年基金资助项目(52004096)。
摘 要:铁水产量是衡量钢铁厂产能效益的重要经济指标,根据炉次特征对其精准预测有利于钢铁厂的产能结构优化,可促进高炉的稳定与高产。为提高铁水产量预测准确率,结合机器学习理论,以国内某钢铁厂2022年全年生产冶炼数据为基础,提出基于主成分分析(PCA)决策的粒子群优化-反向传播(PSO-BP)混合预测模型。首先利用主成分分析对原始数据集进行降维处理;然后利用粒子群搜索算法优化BP神经网络的权值矩阵,成功解决BP神经网络收敛速度慢、易陷入局部最优的问题;最后结合炼铁理论,根据主成分分析结果确定模型的输入向量与拓扑结构。测试结果表明,该模型相较于其他传统模型预测误差更小,在误差范围为±50 t的情况下准确率达99.8%,实现对高炉铁水产量的精准预测,可有效指导铁水包的中转调度,为高炉参数调控提供数据支撑。The yield of molten iron is an important economic indicator to measure the capacity efficiency of steel plants,and its accurate prediction according to the characteristics of furnaces is conducive to capacity structure optimization of steel plants and promotes the stability and high yield of blast furnace.In order to improve the prediction accuracy of molten iron yield,combined with machine learning theory,a hybrid prediction model of particle swarm optimization-back propagation(PSO-BP)based on principal component analysis(PCA)decision-making was proposed based on the annual production and smelting data of a domestic steel plant in 2022.To begin with,principal component analysis was used to reduce the dimensionality of the original data set,and then the particle swarm search algorithm was used to optimize the weight matrix of BP neural network,which successfully solved the problem that BP neural network had slow convergence speed and was easy to fall into local optimality.Finally,combined with the ironmaking theory,the input vector and topology of the model were determined according to the results of principal component analysis.The testing results show that the prediction error of the model is smaller than that of other traditional models,and the accuracy rate is 99.8%when the error range is±50 t,which accurately realizes the prediction of molten iron yield for blast furnace,effectively guides the transfer scheduling of molten iron ladles,and provides data support for blast furnace parameter regulation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229