改进人工蜂群算法及其在工程设计中的应用  被引量:2

Research on Artificial Bee Colony Algorithm and Application in Engineering Design

在线阅读下载全文

作  者:李波[1] 宋婧媛 张邦成 LI Bo;SONG Jingyuan;ZHANG Bangcheng(School of Computer Technology and Engineering,Changchun Institute of Technology,Changchun 130012,China;School of Emergercy Management,Changchun Institute of Technology,Changchun 130012,China;School of Mechanical and Electrical Engineering,Changchun Institute of Technology,Changchun 130012,China)

机构地区:[1]长春工程学院计算机技术与工程学院,长春130012 [2]长春工程学院吉林应急管理学院,长春130012 [3]长春工程学院机电工程学院,长春130012

出  处:《吉林大学学报(信息科学版)》2023年第5期810-819,共10页Journal of Jilin University(Information Science Edition)

基  金:吉林省教育厅科学研究基金资助项目(JJKH20230713KJ)。

摘  要:针对求解多目标优化问题(MOP:Multi-Objective Problem)时,人工蜂群算法(ABC:Artificial Bee Colony)存在难以收敛和候选解多样性难以保持的问题,对其各部分求解策略进行了改进。基于ABC算法框架,设计了一种基于自适应求解策略的多目标ABC算法,并在机电执行器设计的实际应用工程设计问题中,将所提出的改进多目标ABC与其他典型的群智能算法进行优化性能比较。通过实验验证可知,所提出的MOABC/DD(Multi-Objective Artificial Bee Colony Based on Dominance and Decomposition)算法在求解机电执行器设计问题基准测试用例时,与典型算法相比,具有较好的问题求解精度。并且MOABC/DD的实验结果较为稳定,从而证明了MOABC/DD具有较高的求解稳定性和健壮性。The Artificial Bee Colony algorithm(ABC:Artificial Bee Colony) suffers from the problems of difficult convergence and difficulty in maintaining the diversity of candidate solutions.In order to solve the Multi-Objective Optimization Problem(MOP:Multi-Objective Problem) the solution strategy of each part is improved.Based on the ABC algorithm framework,a multi-objective ABC algorithm based on an adaptive solution strategy is designed to compare the performance of the improved multi-objective ABC with other typical swarm intelligence algorithms in the practical application of engineering design problem of electromechanical actuator design.The experimental verification shows that the proposed MOABC/DD(Multi-Objective Artificial Bee Colony Based on Dominance and Decomposition) algorithm has better problem solving accuracy compared with typical algorithms in solving the benchmark test case of electromechanical actuator design problem.The experimental results of MOABC/DD are more stable,thus proving that MOABC/DD has high solution stability and robustness.

关 键 词:多目标优化问题 人工蜂群算法 群智能算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象