含奇异势和记忆项的四阶抛物方程解的整体存在性与爆破  

Global Existence and Blow-up of Solutions for a Fourth-Order Parabolic Equation with Singular Potential and Memory Terms

在线阅读下载全文

作  者:杜欣蕾 杨晗[1] DU Xinlei;YANG Han(School of Mathematics,Sourthwest Jiaotong University,Chengdu 611756,China)

机构地区:[1]西南交通大学数学学院,四川成都611756

出  处:《应用数学》2024年第1期214-225,共12页Mathematica Applicata

基  金:国家自然科学基金(11701477,11971394)。

摘  要:本文研究一类具有奇异势和记忆项的四阶抛物方程在有界域上的初边值问题.当初值在稳定集中,初始能量在正有界范围内,根据Faedo-Galerkin方法结合Hardy-Sobolev不等式得到了问题解的整体存在性并建立了能量泛函的衰减估计;当初始能量为负时,利用凸方法证明了问题的解在有限时刻爆破并估计了爆破时间上界,该上界依赖于初始能量;当初值位于不稳定集,初始能量有上界时,通过构造辅助泛函获得了一个与初始能量无关的爆破时间上界.This paper is concerned with the initial boundary value problem of a class of fourth order parabolic equations with singular potential and memory terms which are in a bounded domain.Firstly,the global existence of solutions are derived and the decay rate of the energy functional is estimated by the Faedo-Galerkin method and Hardy Sobolev inequality when the inital value is in the stable set and the initial energy is positive and bounded.In addition,for the negative initial energy,the convex method is used to prove that the solutions blow up in finite time and give the upper bound of the blow-up time,which depends on the initial energy;Finally,when the inital value is in the unstable set and the initial energy has an upper bound.By constructing an auxiliary functional,the upper bound of the blow-up time is obtained,which is independent of the initial energy.

关 键 词:四阶抛物方程 奇异势项 记忆项 整体解 爆破 

分 类 号:O175.26[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象