基于数据融合的高速电气化铁路牵引供电安全智能监测方法  

Intelligent monitoring method for traction power supply safety of high-speed electrified railway based on data fusion

在线阅读下载全文

作  者:于士伟 Yu Shiwei(China Railway Construction Bridge Engineering Bureau Group Electrification Engineering Co.,Ltd.,Tianjin,300300,China)

机构地区:[1]中铁建大桥工程局集团电气化工程有限公司,天津300300

出  处:《机械设计与制造工程》2023年第11期81-85,共5页Machine Design and Manufacturing Engineering

摘  要:牵引供电安全监测数据中存在较多冗余数据,导致高速电气化铁路牵引供电安全智能监测效果较差。为此设计一种基于数据融合的高速电气化铁路牵引供电安全智能监测方法。首先,在数据监测过程中,对数据进行压缩处理。然后,根据设备的状态分类建立相应的监测指标,以评估牵引供电系统的可靠性和安全性。最后,采用D-S证据推理的数据融合方法,结合多个信任函数构建分配框架,实现了对监测数据的融合。实验结果表明,该方法在故障供电牵引网不可用时长监测、平均连续可用时长监测上都具有较高的监测准确性,且在铁路牵引供电安全在线监测上花费的时间较少,监测精度较高,有效提高了监测效果。There are many redundant data in the safety monitoring data of traction power supply,which results in poor intelligent monitoring effect of high-speed railway electrification traction power supply safety.Therefore,an intelligent monitoring method for traction power supply safety of high-speed railway electrification based on data fusion is designed.Firstly,during the data monitoring process,the data is compressed and processed.Then,based on the status classification of the equipment,corresponding monitoring indicators are established to evaluate the reliability and safety of the traction power supply system.Finally,the data fusion method of D-S evidence reasoning is adopted,combined with multiple trust functions to construct an allocation framework and achieve the fusion of monitoring data.The experimental results show that this method has high monitoring accuracy in monitoring the unavailable time and average continuous available time of the faulty power supply traction network,and spends less time on online monitoring of railway traction power supply safety.The monitoring accuracy is high,effectively improving the monitoring effect.

关 键 词:数据融合 高速电气化铁路牵引 供电安全 智能监测 压缩 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象