基于混沌多目标蚁狮优化算法和核极限学习机的冲击性负荷预测模型  被引量:1

Impact Load Forecasting Model Based on Chaotic Multi-objective Antlion Optimization Algorithm and Kernel Extreme Learning Machine

在线阅读下载全文

作  者:黄裕春 贾巍 雷才嘉 方兵华 刘涌 李洋洋 HUANG Yuchun;JIA Wei;LEI Caijia;FANG Binghua;LIU Yong;LI Yangyang(Guangzhou Power Supply Bureau,Guangdong Power Grid Co.,Ltd.,Guangzhou 510620,Guangdong Province,China;Shanghai Proinvent Info Tech Co.,Ltd.,Minhang District,Shanghai 200241,China)

机构地区:[1]广东电网有限责任公司广州供电局,广东省广州市510620 [2]上海博英信息科技有限公司,上海市闵行区200241

出  处:《现代电力》2023年第6期1043-1051,共9页Modern Electric Power

基  金:中国南方电网有限责任公司科技研发项目(GZHKJXM20180011)

摘  要:针对冲击性负荷预测问题,提出了一种基于混沌多目标蚁狮优化算法(chaotic multi-objective antlion optimization algorithm,CMOALO)和核极限学习机(kernel extreme learning machine,KELM)的冲击性负荷预测模型。首先,为了降低预测难度,使用集合经验模式分解(ensemble empirical mode decomposition,EEMD)将原始冲击性负荷分解为一系列更为平稳的子序列。为了同时提升模型的预测精度和稳定性,提出了一种MOALO;其次,为进一步提高算法的解搜索能力,将MOALO与混沌运算融合,提出了CMOALO算法,将其用于优化KELM。最后通过某地区真实采集的冲击性负荷数据对所提出的EEMD-CMOALOKELM模型进行验证。通过案例分析可知,所提出的冲击性负荷预测模型,无论是在预测精度还是预测稳定性方面,性能最好。In allusion to the forecasting of impact load,an impact load forecasting model based on chaotic multi-objective antlion optimization algorithm(abbr.CMOALO)and kernel extreme learning machine(abbr.KELM)was proposed.Firstly,to decrease the difficulty of forecasting the ensemble empirical mode decomposition(abbr.EEMD)was utilized to decompose the original impact load into a series of smoother subseries.Secondly,to simultaneously improve the forecasting accuracy and stability of the proposed model,a multi-objective ant lion optimization algorithm(abbr.MOALO)was proposed.Thirdly,to further improve the solution search ability of the algorithm,the MOALO was integrated with chaotic operation to put forward CMOALO algorithm and applying the latter to optimize KELM.Finally,the put forward EEMD-CMOALO-KELM model was verified by true-collected impact load data in a certain region.It can be know by case study that the proposed impact load forecasting model possesses the best performance in both aspects of forecasting accuracy and stability of predicted results.

关 键 词:冲击性负荷预测 集合经验模式分解 混沌多目标蚁狮优化算法 核极限学习机 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象