三维地震数据频域无监督随机噪声压制方法  被引量:2

An unsupervised random noise suppression method in frequency domain for 3D seismic data

在线阅读下载全文

作  者:薛亚茹[1,2] 苏军利 冯璐瑜 张程 梁琪 XUE Yaru;SU Junli;FENG Luyu;ZHANG Cheng;LIANG Qi(College of Information Science and Engineering,China University of Petroleum(Beijing),Beijing 102249,China;National Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249,China)

机构地区:[1]中国石油大学(北京)信息科学与工程学院,北京102249 [2]中国石油大学(北京)油气资源与工程全国重点实验室,北京102249

出  处:《石油地球物理勘探》2023年第6期1322-1331,共10页Oil Geophysical Prospecting

基  金:中国石油科技创新基金项目“基于小波神经网络的多源地震数据分离方法研究”(2020D-5007-0301)资助。

摘  要:提高数据信噪比是地震资料处理过程中的关键环节。目前基于深度学习的降噪方法已取得较好效果。但该类方法以数据局部相似性为前提,采用时空域数据分窗进行处理,运算效率往往较低。考虑到地质结构的连续性,炮间数据具有一定的相似性,利用其同频率分量的低秩特点,设计了一种三维数据频域降秩的深度学习去噪方法。首先阐明三维数据的频域低秩原理,采用奇异值分解理论指导建立自编码神经网络;考虑频域随机噪声的分布特点,采用K-L(Kullback-Leibler)散度约束损失函数,改善了去噪效果。通过对合成记录和实际资料处理,并与多通道奇异谱分析(Multichannel Singular Spectrum Analysis,MSSA)及K-SVD(K-奇异值分解)方法对比,验证了该方法在去噪效果和计算效率等方面的优势。Improving the signal-to-noise ratio is a key step in seismic data processing.The current deep learning-based noise reduction methods have achieved better results.However,these methods are carried out in the temporal-spatial domain based on the local similarity of the seismic data and the processing efficiency is low.In view of the lateral continuity of geological structure,the shot gathers are very similar.Thus,an unsupervised rank-reduction denoise method in frequency domain is proposed based on the low-rank feature of the same frequency component of 3D data.The low-rank principle in frequency domain of 3D data is expounded and the singular value decomposition theory is used to guide the establishment of autoencoding network;Considering the characteristics of random noise distribution in frequency domain,K-L(Kullback-Leibler)divergence is used to constrain the loss function to improve the denoising effect.The experiments on synthetic and field data verified the advantages of the proposed method in denoising performance and computational efficiency compared with the multichannel singular spectrum analysis(MSSA)and K-SVD(K-Singular Value Decomposition)methods.

关 键 词:无监督网络 频域去噪 奇异值分解 K-L 散度 自编码网络 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象